Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T13:37:00.418Z Has data issue: false hasContentIssue false

Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration

Published online by Cambridge University Press:  05 December 2005

J. BADZIAK
Affiliation:
Institute of Plasma Physics and Laser Microfusion, EURATOM Association, Warsaw, Poland
S. GŁOWACZ
Affiliation:
Institute of Plasma Physics and Laser Microfusion, EURATOM Association, Warsaw, Poland
S. JABŁOŃSKI
Affiliation:
Institute of Plasma Physics and Laser Microfusion, EURATOM Association, Warsaw, Poland
P. PARYS
Affiliation:
Institute of Plasma Physics and Laser Microfusion, EURATOM Association, Warsaw, Poland
J. WOŁOWSKI
Affiliation:
Institute of Plasma Physics and Laser Microfusion, EURATOM Association, Warsaw, Poland
H. HORA
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia

Abstract

Basic properties of generation of high-current ion beams using the skin-layer ponderomotive acceleration (S-LPA) mechanism, induced by a short laser pulse interacting with a solid target are studied. Simplified scaling laws for the ion energies, the ion current densities, the ion beam intensities, and the efficiency of ions' production are derived for the cases of subrelativistic and relativistic laser-plasma interactions. The results of the time-of-flight measurements performed for both backward-accelerated ion beams from a massive target and forward-accelerated beams from a thin foil target irradiated by 1-ps laser pulse of intensity up to ∼ 1017 W/cm2 are presented. The ion current densities and the ion beam intensities at the source obtained from these measurements are compared to the ones achieved in recent short-pulse experiments using the target normal sheath acceleration (TNSA) mechanism at relativistic (>1019 W/cm2) laser intensities. The possibility of application of high-current ion beams produced by S-LPA at relativistic intensities for fast ignition of fusion target is considered. Using the derived scaling laws for the ion beam parameters, the achievement conditions for ignition of compressed DT fuel with ion beams driven by ps laser pulses of total energy ≤ 100 kJ is shown.

Type
Workshop on Fast High Density Plasma Blocks Driven By Picosecond Terawatt Lasers
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. (1999). Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel. Phys. Plasmas 6, 33163326.Google Scholar
Atzeni, S., Temporal, M. & Honrubia, J.J. (2002). A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons. Nucl. Fusion 42, L1L4.Google Scholar
Badziak, J., Chizhov, S.A., Kozlov, A.A., Makowski, J., Paduch, M., Tomaszewski, K., Vankov, A.B. & Yashin, V.E. (1997). Picosecond, terawatt, all-Nd:glass CPA laser system. Opt. Commun. 134, 495502.Google Scholar
Badziak, J., Makowski, J., Parys, P., Ryć, L., Wołowski, J., Woryna, E. & Vankov, A.B. (2001). Intensity-dependent characteristics of a picosecond laser-produced Cu plasma. J. Phys. D: Appl. Phys. 34, 18851891.Google Scholar
Badziak, J., Hora, H., Woryna, E., Jabłoński, S., Laśka, L., Parys, P., Rohlena, K. & Wołowski, J. (2003). Experimental evidence of differences in properties of fast ion fluxes from short-pulse and long-pulse laser-plasma interactions. Phys. Lett. A 315, 452457.Google Scholar
Badziak, J., Głowacz, S., Jabłoński, S., Parys, P., Wołowski, J. & Hora, H. (2004a). Production of ultrahigh-current-density ion beams by short-pulses skin-layer laser-plasma interaction. Appl. Phys. Lett. 85, 30413043.Google Scholar
Badziak, J., Głowacz, S., Jabłoński, S., Parys, P., Wołowski, J. & Hora, H. (2004b). Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction. Plasma Phys. Contr. Fusion 46, B541B555.Google Scholar
Badziak, J., Głowacz, S., Jabłoński, S., Parys, P., Wołowski, J. & Hora, H. (2005). Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction. Laser Part. Beams 23, 143147.Google Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., Galimberti, M., Gizzi, L.A., Mackinnon, A.J., Snavely, R.D., Patel, P., Hatchett, S., Key, M. & Nazarov, W. (2002). Propagation issues and energetic particle production in laser-plasma interactions at intensities exceeding 1019 W/cm2. Laser Part. Beams 20, 3138.Google Scholar
Borghesi, M., Mackinnon, A.J., Campbell, D.H., Hicks, D.G., Kar, S., Patel, P.K., Price, D., Romagnani, L., Schiavi, A. & Willi, O. (2004). Multi-MeV protons source investigations in ultraintense laser-foil interactions. Phys. Rev. Lett. 92, 055003-1055003-4.Google Scholar
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernández, J., Gauthier, J.-C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pépin, H. & Renard-leGalloudec, N. (2004). Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801-1204801-4.Google Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003-1175003-4.Google Scholar
Głowacz, S., Badziak, J. Jabłoński, S., &Hora, H. (2004). Numerical modelling of production of ultrahigh-current-density ion beams by short-pulse laser-plasma interaction. Czech. J. Phys. 54, C460C467.Google Scholar
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short-pulse laser interaction with thin foils. Phys. Rev. Lett. 89, 085002-1085002-4.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heildelberg: Springer.
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser plasma interaction II. Czech. J. Phys. 53, 199217.Google Scholar
Hora, H., Osman, F., Cang, Y., Badziak, J., Jabłoński, S., Głowacz, S., Miley, G.H., Hammerling, P., Wołowski, J., Jungwirth, K., Rohlena, K., He, X., Peng, H. & Zhang, J. (2004). TW-ps laser driven blocks for light ion beam fusion in solid density DT. Proc. SPIE 5627, 5163.Google Scholar
Kaluza, M., Schreiber, J., Santala, M.I.K., Tsakiris, G.D., Eidmann, K., Meyer-ter-Vehn, J. & Witte, K.J. (2004). Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 045003-1045003-4.Google Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Miyakoshi, T., Miyanag, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T., & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798802.Google Scholar
Mackinnon, A.J., Borghesi, M., Hatchett, S., Key, M.H., Patel, P.K., Campbell, H., Schiavi, A., Snavely, R., Wilks, S.C. & Willi, O. (2001). Effect of plasma scale length on multi-MeV proton production by intense laser pulses. Phys. Rev. Lett. 86, 17691772.Google Scholar
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with and ultrafast proton beam. Phys. Rev. Lett. 91, 125004-1125004-4.Google Scholar
Pegoraro, F., Atzeni, S., Borghesi, M., Bulanov, S., Esirkepov, T., Honrubia, J., Kato, Y., Khoroshkov, V., Nishihara, K., Tajima, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high-power laser-plasma interactions and their applications. Laser Part. Beams 22, 1924.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown,C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D., &Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 89, 436439.Google Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.Google Scholar
Sentoku, Y., Cowan, A., Kemp, A. & Ruhl, H. (2003). High energy proton acceleration in interaction of short laser pulse with dense plasma target. Phys. Plasmas 10, 20092015.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 86, 17691772.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Rev. Lett. 69, 13831386.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.Google Scholar
Umstadter, D. (2001). Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas 8, 17741785.Google Scholar
Zepf, M., Clark, E.L., Beg, F.N., Clarke, R.J., Dangor, A.E., Gopal, A., Krushelnick, K., Norreys, P.A., Tatarakis, M., Wagner, U. & Wei, M.S. (2003). Proton accelerations from high-intensity laser interactions with thin foil targets. Phys. Rev. Lett. 90, 064801-1064801-4.Google Scholar