Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T20:51:56.617Z Has data issue: false hasContentIssue false

Laser-produced blast wave and numerical simulation using the FLASH code

Published online by Cambridge University Press:  05 December 2005

D.R. FARLEY
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka Japan EPRI Worldwide, Palo Alto, California
K. SHIGEMORI
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka Japan
H. AZECHI
Affiliation:
Institute of Laser Engineering, Osaka University, Suita, Osaka Japan

Abstract

Two-dimensional (2D) FLASH simulations were run with Spitzer-Härm conductivity on and off in an attempt to simulate a laser-produced blast wave. Dissociation, ionization, recombination, and radiative cooling were not included. An initial Gaussian temperature profile with T0 = 120 eV and spot radius r0 = 25 μm was used assuming 1 μm thickness of the CH disk is ablated into the background nitrogen gas. Evolution of the blast wave differs slightly between the cases of Spitzer-Härm on and off, and neither case matches well with experiment. Due to the high temperatures involved, a thermal wave should be expected such that the Spitzer-Härm conductivity on case is more likely. A simulation run with an initial temperature of ∼ 4 keV might match better with experiment.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ali, A.W. & McLean, E.A. (1985). Electron density and temperature in the photoionized background gas (N2) surrounding a laser-produced plasma. J. Quant. Spect. Radiat. Trans. 33, 381390.Google Scholar
Calder, A.C., Fryxell, B., Plewa, T., Rosner, R., Dursi, L.J., Weirs, V.G., Dupont, T., Robey, H.F., Kane, J.O., Remington, B.A., Drake, R.P., Dimonte, G., Zingale, M., Timmes, F.X., Olson, K., Ricker, P., MacNeice, P. & Tufo, H.M. (2002). On validating an astrophysical simulation code. Astrophys. J. Supp. 143, 201230.Google Scholar
Ditmire, T., Gumbrell, E.T., Smith, R.A., Mountford, L. & Hutchinson, M.H.R. (1996). Supersonic ionization wave driven by radiation transport in a short-pulse laser-produced plasma. Phys. Rev. Lett. 77, 498501.Google Scholar
Dunn, M.G. & Kang, S.W. (1973). Theoretical and experimental studies of reentry plasmas. Contractor Report No. CR-2232. NASA.
Edwards, M.J., MacKinnon, A.J., Zweiback, J., Shigemori, K., Ryutov, D., Rubenchik, A.M., Keilty, K.A., Liang, E., Remington, B.A. & Ditmire, T. (2001). Investigation of ultrafast laser-driven radiative blast waves. Phys. Rev. Lett. 87, 085004.Google Scholar
Eliezer, S. (2002). Thermal conduction and heat waves. In The Interaction of High-Power Lasers with Plasmas, p. 202. Bristol: Institute of Physics Publishing.
Giuliani, J.L., Jr., Mulbrandon, M. & Hyman, E. (1989). Numerical simulation of laser-target interaction and blast wave formation. Phys. Fluids B 1, 14631476.Google Scholar
Grun, J., Laming, M., Manka, C., Donnelly, D.W., Covington, B.C., Fischer, R.P., Velikovich, A. & Khokhlov, A. (2003). Laser-plasma simulations of astrophysical phenomena and novel applications to semiconductor annealing. Laser Part. Beams 21, 529534.Google Scholar
Laming, J.M. & Grun, J. (2002). Dynamical overstability of radiative blast waves: The atomic physics of shock stability. PRL 89, 125002.Google Scholar
Landau, L.D. & Lifshitz, E.M. (1987). A strong explosion. In Fluid Mechanics (Sykes, J.B. & Reid, W.H., Eds.), 2nd Edition, pp. 403406. New York: Pergamon Press.
Laville, S., Vidal, F., Johnston, T.W., Chaker, M. & Le Drogoff, B. (2004). Modeling the time evolution of laser-induced plasmas for various pulse durations and fluences. Phys. Plasmas 11, 21822190.Google Scholar
MacFarlane, J.J., Moses, G.A. & Peterson, R.R. (1989). Energy deposition and shock wave evolution from laser-generated plasma. Phys. Fluids B 1, 635643.Google Scholar
Peng, G., Zabusky, N.J. & Zhang, S. (2003). Jet and vortex flows in a shock/hemispherical-bubble-on-wall configuration. Laser Part. Beams 21, 449453.Google Scholar
Post, D.E., Jensen, R.V., Tarter, C.B., Grasberger, W.H. & Lokke, W.A. (1977). Atomic Data Nuclear Data Tables 20, 397439.
Raymond, J.C., Cox, D.P. & Smith, B.W. (1976). Radiative cooling of a low-density plasma. Astrophys. J. 204, 290292.Google Scholar
Sedov, L.I. (1993). Spherical detonation. In Similarity and Dimensional Methods in Mechanics (Volkovets, A.G., Ed.), 10th Edition, pp. 240310. Boca Raton, FL: CRC Press.
Zhang, S., Zabusky, N.J. & Nishihara, K. (2003). Vortex structures and turbulence emerging in a supernova 1987a configuration: interaction of “complex” blast waves and cylindrical/spherical bubbles. Laser Part. Beams 21, 471477.Google Scholar
Zel'dovich, Y.B. & Raizer, Y.P. (1967). Strong explosion in a homogeneous atmosphere. In Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Hayes, W.D. & Probstein, R.F., Eds.), pp. 93101. New York: Academic Press.