Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T16:43:24.023Z Has data issue: false hasContentIssue false

Mitigation of electromagnetic instabilities in fast ignition scenario

Published online by Cambridge University Press:  02 June 2005

CLAUDE DEUTSCH
Affiliation:
Laboratoire de Physique des Gaz des Plasmas (UMR-CNRS), Université Paris XI, Orsay Cedex, France
ANTOINE BRET
Affiliation:
Laboratoire de Physique des Gaz des Plasmas (UMR-CNRS), Université Paris XI, Orsay Cedex, France
PATRICE FROMY
Affiliation:
Centre de Ressources Informatiques, Université Paris XI, Orsay Cedex, France

Abstract

We address the issues of collective stopping for intense relativistic electron beams (REB) used to selectively ignite precompressed deuterium + tritium (DT) fuels. We investigate the subtle interplay of electron collisions in target as well as in beam plasmas with quasi-linear electromagnetic growth rates. Intrabeam scattering is found effective in taming those instabilities, in particular for high transverse temperatures.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bret, A., Deutsch, C. & Firpo, M.C. (2005). Bridging the gap between two stream and filamentation instabilities. Laser Part. Beams 23, In press.CrossRefGoogle Scholar
Bret, A., Firpo, M.C. & Deutsch, C. (2004). Collective electromagnetic modes for beam-plasma interaction in whole k space. Phys. Rev. E 70, 46401.Google Scholar
Deutsch, C., Furukawa, H., Mima, H., Murakami, K. and Nishihara, K. (1996). Interaction physics of the fast ignition concept. Phys. Rev. Lett. 77, 2483.CrossRefGoogle Scholar
Deutsch, C. (2003a). Fast ignition schemes for inertial confinement fusion. Eur. Phys. J. Appl. Phys. 24, 95.CrossRefGoogle Scholar
Deutsch, C. (2003b). Transport of Megaelectron Volt protons for fast ignition Laser Part. Beams 21, 3335.CrossRefGoogle Scholar
Deutsch, C. (2004). Penetration of charged particle beams in the outer layers of precompressed thermonuclear fuel. Laser Part. Beams 22, 115120.Google Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnik, K., Miyakoshi, T., Miyanada, N., Normatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798.CrossRefGoogle Scholar
Kono, M. & Ichikawa, Y.H. (1973). Renormalization of the wave-particle interaction in weakly turbulent plasmas. Prog. Theor. Phys. 49, 754.CrossRefGoogle Scholar
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts problems and prospective. Laser Part. Beams 22, 512CrossRefGoogle Scholar
Okada, T. & Niu, K. (1980). Electromagnetic instability and stopping power of plasma for relativistic electron beams. J. Plasma Phys. 23, 423.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, M.E., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra powerful lasers. Phys. Plasmas 1, 1626.Google Scholar