Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T05:01:34.776Z Has data issue: false hasContentIssue false

Numerical study of positron production with short-pulse high-intensity lasers

Published online by Cambridge University Press:  28 January 2014

Vaclav Hanus*
Affiliation:
Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Prague, Czech Republic Institute of Plasma Physics, ASCR, v.v.i., PALS Centre, Prague, Czech Republic
Ladislav Drska
Affiliation:
Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Prague, Czech Republic
Emmanuel d'Humieres
Affiliation:
Centre Lasers Intenses et Applications, Université Bordeaux 1 - CEA - CNRS, Talence Cedex, France
Vladimir Tikhonchuk
Affiliation:
Centre Lasers Intenses et Applications, Université Bordeaux 1 - CEA - CNRS, Talence Cedex, France
*
Address correspondence and reprint requests to: Vaclav Hanus, Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Prague, Czech Republic. E-mail: hanused@gmail.com

Abstract

One-dimensional particle-in-cell and Monte-Carlo (FLUKA) simulation methods were used together, in order to investigate the production of positrons in lead targets, illuminated by a short-pulse high-intensity laser. The study is focused on lead targets of 1 mm thickness and more and pulses of intensity in the range 1019–1022 W/cm2. The calculations provided an estimate of an absolute number of positrons and the ratio of electrons and positrons emerging from the target. The thickness of the target is scaled in order to find an optimal thickness that could provide a neutral electron-positron beam.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Battistoni, G., Muraro, S., Sala, P.R., Cerutti, F., Ferrari, A., Roesler, S., Fasso‘, A. & Ranft, J. (2007). The FLUKA code: Description and bench-marking. AIP Conf. Proc. 896, 3149.Google Scholar
Berestetskii, V.B., Pitaevskii, L.V. & Lifshitz, E.M. (1984). Quantum Electrodynamics. Burlington: Butterworth-Heinemann.Google Scholar
Blanchot, N., Behar, G., Berthier, T., Bignon, E., Boubault, F., Chappuis, C., Coïc, H., Damiens-Dupont, C., Ebrardt, J., Gautheron, Y., Gibert, P., Hartmann, O., Hugonnot, E., Laborde, F., Lebeaux, D., Luce, J., Montant, S., Noailles, S., Néauport, J., Raffestin, D., Remy, B., Roques, A., Sautarel, F., Sautet, M., Sauteret, C. & Rouyer, C. (2008). Overview of PETAL, the multi-Petawatt project on the LIL facility. Plasma Phys. Contr. Fusion 50, 124045.Google Scholar
Chen, H., Wilks, S., Bonlie, J., Liang, E., Myatt, J., Price, D., Meyerhofer, D. & Beiersdorfer, P. (2009). Relativistic positron creation using ultraintense short pulse lasers. Phys. Rev. Lett. 102, 105001.Google Scholar
Chen, H., Meyerhofer, D.D., Wilks, S.C., Cauble, R., Dollar, F., Falk, K., Gregori, G., Hazi, A., Moses, E.I., Murphy, C.D., Myatt, J., Park, J., Seely, J., Shepherd, R., Spitkovsky, A., Stoeckl, C., Szabo, C.I., Tommasini, R., Zulick, C. & Beiersdorfer, P. (2011). Towards laboratory produced relativistic electron–positron pair plasmas. High Ener. Density Phys. 7, 225229.Google Scholar
Chen, H., Sheppard, J.C., Meyerhofer, D.D., Hazi, A., Link, A., Anderson, S., Baldis, H.A., Fedosejev, R., Gronberg, J., Izumi, N., Kerr, S., Marley, E., Park, J., Tommasini, R., Wilks, S. & Williams, G.J. (2013). Emittance of positron beams produced in intense laser plasma interaction. Phys. Plasmas 20, 013111.Google Scholar
Debayle, A., Honrubia, J., D'Humiéres, E. & Tikhonchuk, V. (2010). Divergence of laser-driven relativistic electron beams. Phys. Rev. 82, 110.Google Scholar
Ferrari, A., Sala, P.R., Fasso‘, A. & Ranft, J. (2005). FLUKA: A multi-particle transport code. Technical Report.Google Scholar
Lang, Kenneth R. (2006). Astrophysical Formulae: Radiation, Gas Processes and High Energy Astrophysics. New York: Springer.Google Scholar
Luo, W., Zhuo, H.B., Ma, Y.Y., Yang, X.H., Zhao, N. & Yu, M.Y. (2012). Ultrashort-pulse MeV positron beam generation from intense Compton-scattering γ-ray source driven by laser wakefield acceleration. Laser Part. Beams 31, 8994.Google Scholar
Moritaka, T., Baiotti, L., Lin, A., Weiwu, L., Sakawa, Y., Kuramitsu, Y., Morita, T. & Takabe, H. (2013). Plasma particle-in-cell simulations with QED reactions for pair production experiments using a high-Z solid target. J. Phys. Conf. Ser. 454, 012016.Google Scholar
Myatt, J., Delettrez, J.A., Maximov, A.V., Meyerhofer, D.D., Short, R.W., Stoeckl, C. & Storm, M. (2009). Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation. Phys. Rev. E. Stat. Nonlinear Soft Matter Phys. 79, 066409.Google Scholar
Nakashima, K. & Takabe, H. (2002). Numerical study of pair creation by ultraintense lasers. Phys. Plasmas 9, 1505.Google Scholar
Ridgers, C.P., Brady, C.S., Duclous, R., Kirk, J.G., Bennett, K., Arber, T.D. & Bell, A.R. (2012). Dense Electron-Positron Plasmas and Ultra-Intense Bursts of Gamma-Rays from Laser-Irradiated Solids. Phys. Rev. Lett. 108, 165006.Google Scholar
Rus, B., Bakule, P., Kramer, D., Korn, G., Green, J.T., Novak, J., Fibrich, M., Batysta, F., Thoma, J., Naylon, J., Mazanec, T., Vitek, M., Barros, R., Koutris, E., Hrebicek, J., Polan, J., Base, R., Homer, P., Koselja, M., Havlicek, T., Honsa, A., Novak, M., Zervos, Ch., Korous, P. & Houzvicka, J. (2013). ELI-Beamlines laser systems: Status and design options. Proc. SPIE 8780.Google Scholar
Sentoku, Y. & Kemp, A.J. (2008). Numerical methods for particle simulations at extreme densities and temperatures: Weighted particles, relativistic collisions and reduced currents. J. Comput. Phys. 227, 68466861.Google Scholar
Yan, Y., Wu, Y., Zhao, Z., Teng, J., Yu, J., Liu, D., Dong, K., Wei, L., Fan, W., Cao, L., Yao, Z. & Gu, Y. (2012). Monte Carlo simulation study of positron generation in ultra-intense laser-solid interactions. Phys. Plasmas 19, 023114.Google Scholar