Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T11:36:14.790Z Has data issue: false hasContentIssue false

Volume ignition of laser driven fusion pellets and double layer effects*

Published online by Cambridge University Press:  09 March 2009

L. Cicchitelli
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington, 2033, Australia
S. Eliezer
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington, 2033, Australia
M. P. Goldsworthy
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington, 2033, Australia
F. Green
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington, 2033, Australia
H. Hora
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington, 2033, Australia
P. S. Ray
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington, 2033, Australia
R. J. Stening
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington, 2033, Australia
H. Szichman
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington, 2033, Australia

Abstract

The realization of an ideal volume compression of laser-irradiated fusion pellets (by C. Yamanaka) opens the possibility for an alternative to spark ignition proposed for many years for inertial confinement fusion. A re-evaluation of the difficulties of the central spark ignition of laser driven pellets is given. The alternative volume compression theory, together with volume burn and volume ignition (discovered in 1977), have received less attention and are re-evaluated in view of the experimental verification by Yamanaka, generalized fusion gain formulas, and the variation of optimum temperatures derived at self-ignition. Reactor-level DT fusion with MJ-laser pulses and volume compression to 50 times the solid-state density are estimated. Dynamic electric fields and double layers at the surface and in the interior of plasmas result in new phenomena for the acceleration of thermal electrons to suprathermal electrons. Double layers also cause a surface tension which stabilizes against surface wave effects and Rayleigh–Taylor instabilities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afanasyev, Y. V. et al. 1987 ECLIM 87 Conference, Prague May.Google Scholar
Ahlborn, B. 1971 Phys. Lett. 37A, 227.CrossRefGoogle Scholar
Ahlstrom, H. G. 1983 Physics of Laser Fusion, (Nat. Tech. Info. Service, Springfield, Va.).Google Scholar
Alfven, H. 1986 Phys. Today 39, No. 9, 22.CrossRefGoogle Scholar
Basov, N. G. & Krokhin, O. N. 1964 ‘3rd Intl. Quantum Electronics Conf., Paris, February, 1963’, P. Grivet and N. Blombergen Eds. (Dunod, Paris), Nol. 2 p. 1373.Google Scholar
Basov, N. G., Krokhin, O. N. & Sklizkov, G. V. 1972, ‘Laser Interaction and Related Plasma Phenomena’, Schwarz, H. and Hora, H. eds. (Plenum, New York) Vol. 2, p. 389.CrossRefGoogle Scholar
Basov, N. G. et al. 1984, ‘Laser Produced Thermonuclear Fusion’ (in Russian) (Radiotekhnika, Moscow).Google Scholar
Basov, N. G. et al. 1986Heating and Compression of Thermonuclear Targets by Laser Beams’, translated by Dragila, R. and Luther-Davies, B. (Cambridge Univ. Press, Cambridge).Google Scholar
Bobin, J. L. 1974Laser Interaction and Related Plasma Phenomena’, Schwarz, H. and Hora, H. eds. (Plenum, New York), Vol. 3B p. 456.Google Scholar
Bodner, S. 1986 ICF Special Meeting at the IAEA Plasma Physics Conference, Kyoto, November.Google Scholar
Brueckner, A. K. 1969 in Bromberg L. 1983 Fusion: Science, Politics and the Invention of a New Energy Source, (MIT Press, Cambridge Mass.).Google Scholar
Burgess, M. D. et al. 1984 Bull. APS 29, 1381.Google Scholar
Cicchitelli, L. et al. 1984 Laser and Particle Beams 2, 467.CrossRefGoogle Scholar
Cicchitelli, L., Hora, H. & Miley, G. H. 1987, ‘16th AINSE Plasma Physics Conference’(Lucas Heights,New South Wales, Febr. Digest) p. 87Google Scholar
Dawson, J. M. 1964 Phys. Fluids 7, 981.CrossRefGoogle Scholar
Decroisette, M., Watteau, J. P. et al. 1986, Priv. Comm.Google Scholar
Eliezer, S. & Ludmirsky, A. 1983 Laser and Particle Beams 1, 251.CrossRefGoogle Scholar
Eliezer, S. et al. 1985 IEEE Transact. Plasma Sci., PS13, 125.Google Scholar
Eliezer, S., Ghatak, A. & Hora, H. 1986Equations of State’ (Cambridge University Press).Google Scholar
Emmett, J. L., Nuckolls, J. H. & Wood, L. 1974 Scientif. Amer. 230, 24.CrossRefGoogle Scholar
Enright, G. D. & Burnett, N. H. 1984, Bull APS 29, 1184.Google Scholar
Fader, W. J. 1968 Phys. Fluids 11, 2200.CrossRefGoogle Scholar
Goldsworthy, M. P. et al. 1986 IEEE Transact. Plasma Sci., PS14, 823.CrossRefGoogle Scholar
Guderley, G. 1942, Z. Luftfahrtforschung. 19, 302.Google Scholar
Haught, A. F. & Polk, D. H. 1966 Phys. Fluids 9, 2047.CrossRefGoogle Scholar
Heckmann, O. 1965Theorie der Kosmologie’ (Springer, Heidelberg).Google Scholar
Hora, H. & Pfirsch, D. 1970 ‘6th International Quantum Electronics Conference’(Kyoto,Digest) p. 10.Google Scholar
Hora, H. 1971 in Laser Interaction and Related Plasma Phenomena, Schwarz, H. et al. eds. (Plenum, New York) Vol. 1, p. 365.CrossRefGoogle Scholar
Hora, H. & Ray, P. S. 1978, Z. Naturforsch. 33A, 890.CrossRefGoogle Scholar
Hora, H. 1981 Physics of Laser Driven Plasmas (Wiley, New York).Google Scholar
Hora, H. & Pfirsch, D. 1972 in Laser Interaction and Related Plasma Phenomena, Schwarz, H. et al. eds. (Plenum, New York) Vol. 2, p. 515.CrossRefGoogle Scholar
Hora, H. 1983 Atomkernenergie 42, 7.Google Scholar
Hora, H. & Miley, G. H. 1984 Laser Focus 20, (No. 2) 59.Google Scholar
Hora, H., Lalousis, P. & Eliezer, S. 1984a Phys. Rev. Lett. 53, 1650.CrossRefGoogle Scholar
Hora, H. 1985 Laser and Particle Beams 3, 59.CrossRefGoogle Scholar
Hora, H. & Ghatak, A. K. 1985a Phys. Rev. 31A, 3473.CrossRefGoogle Scholar
Hora, H. 1987 Zeitschr. f. Naturforsch 42A, 1239.CrossRefGoogle Scholar
Kentwell, G. W. et al. 1986 J. Physique 47, No. 10, C6165.Google Scholar
Kidder, R. E. 1974 Nuclear Fusion 14, 797.CrossRefGoogle Scholar
Kidder, R. E. 1979 Nuclear Fusion 19, 223.CrossRefGoogle Scholar
Lalousis, P. & Hora, H. 1983 Laser and Particle Beams 1, 383. Laser Focus 1987 23, No. 3. 24.CrossRefGoogle Scholar
Long, K. A. & Tahir, N. A. 1986 Nuclear Fusion 26, 555.CrossRefGoogle Scholar
Mulser, P. 1970 Z. Naturforsch. 25A, 282.CrossRefGoogle Scholar
Mulser, P. 1986 Plasma Physics 28, 215.Google Scholar
Nuckolls, J. H. 1974 Laser Interaction and Related Plasma Phenomena, Schwarz, H. & Hora, H. eds. (Plenum, New York) Vol. 3B p. 399.CrossRefGoogle Scholar
Nuckolls, J. H. 1982. Phys. Today 35, No. 9, 24.CrossRefGoogle Scholar
Pert, G. J. 1987 Laser and Particle Beams 5, 643.CrossRefGoogle Scholar
Ray, P. S. 1977 PhD Thesis University of New South Wales.Google Scholar
Richardson, M. et al. 1986 Laser Interaction and Related Plasma Phenomena, Hora, H. and Miley, G. H. Eds. (Plenum, New York) Vol. 7, p. 179.CrossRefGoogle Scholar
Schmalz, R. F. 1986 Phys. Fluids 29, 1389.CrossRefGoogle Scholar
Schwarzschild, B. 1986. Phys. Today 39, (No. 11) 19.Google Scholar
Spitzer, L. Jr. 1962. Physics of Fully Ionized Gases, (Wiley, New York).Google Scholar
Storm, E. 1986. Lawrence Livermore National Laboratories Press (release 16 January).Google Scholar
Sullivan, W. 1980 New York Times (Jan. 13).Google Scholar
Takabe, H. 1986 Private communication.Google Scholar
Valeo, E. J. 1974 Phys. Fluids, 17, 1391.CrossRefGoogle Scholar
Valeo, E. J. & Kruer, W. L. 1974 Phys. Rev. Lett. 33, 750.CrossRefGoogle Scholar
VanDevender, P. 1987 Laser and Particle Beams 5, No. 3.Google Scholar
Velarde, G. et al. 1986 Laser and Particle Beams 4, 349CrossRefGoogle Scholar
Yamanaka, C. & Nakai, S. 1986 Nature 319, 757.CrossRefGoogle Scholar
Yamanaka, C. et al. 1986a Laser Interaction and Related Plasma Phenomena, Hora, H. and Miley, G. H. Eds. (Plenum, New York) Vol. 7. p. 395.CrossRefGoogle Scholar