Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T21:04:40.408Z Has data issue: false hasContentIssue false

Spectral Enclosures and Complex Resonances for General Self-Adjoint Operators

Published online by Cambridge University Press:  01 February 2010

E.B. Davies
Affiliation:
Department of Mathematics, King's College London, Strand, London WC2R 2LS

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper considers a number of related problems concerning the computation of eigenvalues and complex resonances of a general self-adjoint operator H. The feature which ties the different sections together is that one restricts oneself to spectral properties of H which can be proved by using only vectors from a pre-assigned (possibly finite-dimensional) linear subspace L.

Type
Research Article
Copyright
Copyright © London Mathematical Society 1998

References

1. Agmon, S.. Proc. St. Jeans de Monts Conf (1996).Google Scholar
2. Agmon, S., ‘On perturbations of embedded eigenvalues’, Partial differential equations and mathematical physics, the Danish-Swedish Analysis Seminar, 1995 (ed. Melin, A and Hörmander, L, Birkhauser, Boston, Basel, Berlin, 1996) pp. 114.Google Scholar
3. Arveson, W.. Apple Macintosh programs available at ftp://math.berkeley.edu/pub/Preprints/Bill_Arveson/Mac_programs http://math.berkeley.edu/arveson/.Google Scholar
4. Arveson, W., ‘C*-algebras and numerical linear algebra’, J. Functional Anal. 122 (1994) 333360.CrossRefGoogle Scholar
5. Arveson, W., ‘The role of C*-algebras in infinite-dimensional numerical linear algebra’, Contemp. Math. 167 (1994) 115129.Google Scholar
6. Avron, J., van Mouche, P. H. M. and Simon, B., ‘On the measure of the spectrum for the almost Mathieu operator‘, Commun. Math. Phys. 132 (1990) 103118. Erratum, Commun. Math. Phys. 139 (1991) 215.CrossRefGoogle Scholar
7. Chatelin, F., Spectral approximations of linear operators (Academic Press, New York, 1983).Google Scholar
8. Cycon, H.L., Froese, R.G., Kirsch, W. and Simon, B., Schrödinger operators, with applications to quantum mechanics and global geometry. Texts and Monographs in Physics (Springer-Verlag, 1987).Google Scholar
9. Davies, E.B.. Maple V.4 program eigen35 available at http://www.lms.ac.uk/jcm/1/lms97005/appendix-a/.Google Scholar
10. Davies, E.B.. Maple V.4 program mathieu11 available at http://www.lms.ac.uk/jcm/1/lms97005/appendix-a/.Google Scholar
11. Davies, E.B.. Maple V.4 program polyn1 available at http://www.lms.ac.uk/jcm/1/lms97005/appendix-a/Google Scholar
12. Davies, E.B.. Maple V.4 program reson25 available at http://www.lms.ac.uk/jcm/1/lms97005/appendix-a/.Google Scholar
13. Davies, E.B., Spectral theory and differential operators (Cambridge Univ. Press, 1995).Google Scholar
14. Deift, P.A. and Hempel, R., ‘On the existence of eigenvalues of the Schrödinger operator h - λw in a gap of σ(h)’, Commun. Math. Phys. (1986) 461490.CrossRefGoogle Scholar
15. Gesztesy, F., Graf, G.M. and Simon, B., ‘The ground state energy of Schrödinger operators‘, Commun. Math. Phys. 150 (1992) 375384.Google Scholar
16. Gohberg, I., Lancaster, P. and Rodman, L., Matrices and indefinite scalar product; operator theory and applications 8 (Birkhäuser Verlag, Basel, Boston, Stuttgart, 1983)Google Scholar
17. Harrell II, E.M., ‘Generalizations of Temple’s inequality’, Proc. Amer. Math. Soc. 69 (1978) 271276.Google Scholar
18. Harrell II, E.M., ‘General lower bounds for resonances in one dimension’, Commun. Math. Phys. 86 (1982) 221225.CrossRefGoogle Scholar
19. Kato, T., ‘On the upper and lower bounds of eigenvalues’, J. Phys. Soc. Japan 4 (1949) 334339.CrossRefGoogle Scholar
20. Kato, T., Perturbation theory of linear operators (Springer-Verlag, Berlin, Heidelberg, New York, 1966).Google Scholar
21. Krein, M.G. and Langer, G.K., ‘On some mathematical principles of the linear theory of damped oscillations of continua’, English translation, Integral Eqns. Oper. Theory 1 (1978) 364399, 539566.CrossRefGoogle Scholar
22. Laptev, A. and Safarov, Y., ‘A generalization of the Berezin-Lieb inequality’, Transl. Math. Monogr. (Amer. Math. Soc., Providence, RI, 1996) (2) 175, pp. 6979.Google Scholar
23. Laptev, A. and Safarov, Y., ‘Szegö type limit theorems’, J. Funct. Anal. 138 (1996) 544559.Google Scholar
24. Last, Y., ‘Amost everything about the Almost Mathieu operator I’, Proc. XIth Intern. Congress of Math. Phys., Paris (1994).Google Scholar
25. Last, Y., ‘Zero measure spectrum for the Almost Mathieu operator’, Commun. Math. Phys. 164 (1994) 421432.Google Scholar
26. Markus, A.S., Introduction to the spectral theory of polynomial operator pencils, Transl. Math Monogr. (Amer. Math. Soc., Providence, RI, 1988).Google Scholar
27. Mertins, U., ‘On the convergence of the Goerisch method for self-adjoint eigenvalue problems with arbitrary spectrum’, Zeit. für Anal. und ihre Anwendungen, J. for Analysis and its Applications 15 (1996) 661686.CrossRefGoogle Scholar
28. Plum, M., ‘Guaranteed numerical bounds for eigenvalues’, Spectral Theory and Computational Methods of Sturm-Liouville Problems, preprint, Lecture Notes in Pure and Applied Mathematics Series, 191 (eds Hinton, Don and Schaefer, Philip W., Dekker, Marcel, Inc., 1997).Google Scholar
29. Rosenblum, M. and Rovnjak, J., ‘The factorisation problem for non-negative operator pencils’, Bull. Amer. Math. Soc. 77 (1971) 287318.CrossRefGoogle Scholar
30. Shkalikov, A.A., ‘Operator pencils arising in elasticity and hydrodynamics: the instability index formula’, Operator theory: advances and applications 87 (Birkhäuser Verlag, Basel, Boston, Stuttgart, 1996), pp. 258285.Google Scholar
31. Watkins, D.S., Fundamentals of matrix computations (Wiley, 1991).Google Scholar
32. Widom, H., Toeplitz operators (Prentice-Hall, 1965).Google Scholar
33. Zimmerman, S. and Mertins, U., ‘Variational bounds to eigenvalues of self-adjoint eigenvalue problems with arbitrary spectrum’, Zeit. für Anal. und ihre Anwendungen. J. for Analysis and its Applications 14 (1995) 327345.Google Scholar
Supplementary material: File

Davies Appendix

Appendix

Download Davies Appendix(File)
File 901.9 KB