Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T13:24:04.423Z Has data issue: false hasContentIssue false

104.02 Unifying Wilson’s and Fermat’s congruence theorems

Published online by Cambridge University Press:  02 March 2020

Sourav Koner*
Affiliation:
Tezpur University, Tezpur, Assam, India, 784028 e-mail: harakrishnaranusourav@gmail.com

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© Mathematical Association 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Waring, Edward, Meditationes algebraicae (Cambridge, England: 1770) p. 218.Google Scholar
Joseph Louis Lagrange, “Demonstration d’un théorème nouveau concernant les nombres premiers”, Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres (Berlin), vol. 2, (1771) pp. 125137.Google Scholar
https://en.wikipedia.org/wiki/Wilson%27s_theorem#Proofs.Google Scholar
https://www.jstor.org/stable/pdf/30037444.pdfGoogle Scholar
Solomon, W. Golomb, Combinatorial proof of Fermat’s Little Theorem, American Mathematical Monthly, 63 (10) (1956) p. 718.Google Scholar
Alkauskas, Giedrius, A curious proof of Fermat’s Little Theorem, American Mathematical Monthly 116 (4) (2009) pp. 362364.CrossRefGoogle Scholar