Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T08:37:17.770Z Has data issue: false hasContentIssue false

The majorisation principle for convex functions

Published online by Cambridge University Press:  24 February 2022

G. J. O. Jameson*
Affiliation:
13 Sandown Road, LancasterLA1 4LN e-mail: pgjameson@talktalk.net

Extract

Given positive numbers xj, yj such that $\sum\limits_{i = 1}^n {{x_j}} = \sum\limits_{j = 1}^n {{y_j}} $ , it can happen that $\sum\limits_{j = 1}^n {x_j^2} = \sum\limits_{j = 1}^n {y_j^2} $ : for example, $({x_j}) = (7,\,3,\,2),\,({y_j}) = (6,\,5,\,1)$ . However, such cases are exceptional.

Type
Articles
Copyright
© The Authors, 2022. Published by Cambridge University Press on behalf of The Mathematical Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hardy, G. H., J. Littlewood and G. Pólya, Some simple inequalities satisfied by convex functions, Messenger Math. 58 (1929) pp. 145152.Google Scholar
Karamata, J., Sur une inégalité relative aux fonctions convexes, Publ. Math. Univ. Belgrade 1 (1932) pp. 145148.Google Scholar
Jameson, G. J. O., Monotonicity of the midpoint and trapezium estimates for integrals, Math. Gaz. 105 (2021) pp. 433441.10.1017/mag.2021.110CrossRefGoogle Scholar
Kadelburg, Z., Duhis, D., Luhis, M. and Matis, I., Inequalities of Karamata, Schur and Muirhead, and some applications, Teaching of Math. 8 (2005) pp. 3145.Google Scholar
Hardy, G. H., Littlewood, J. and Pólya, G., Inequalities (2nd edn.), Cambridge University Press (1967).Google Scholar
Marshall, A. W. and Olkin, I., Inequalities: Theory of majorization and its applications, Academic Press (1979).Google Scholar
Bennett, Grahame, Some forms of majorization, Houston J. Math. 36 (2010) pp. 10371066.Google Scholar