Published online by Cambridge University Press: 24 October 2008
The object of this note is to indicate a numerical method for finding periodic solutions of a number of important problems in conduction of heat in which the boundary conditions are periodic in the time and may be linear or non-linear. One example is that of a circular cylinder which is heated by friction along the generators through a rotating arc of its circumference, the remainder of the surface being kept at constant temperature; here the boundary conditions are linear but mixed. Another example, which will be discussed in detail below, is that of the variation of the surface temperature of the moon during a lunation; in this case the boundary condition is non-linear. In all cases the thermal properties of the solid will be assumed to be independent of temperature. Only the semi-infinite solid will be considered here, though the method applies equally well to other cases.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.