Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T05:51:17.889Z Has data issue: false hasContentIssue false

Minimal primal ideals in Banach algebras

Published online by Cambridge University Press:  24 October 2008

Douglas W. B. Somerset
Affiliation:
Thackit Eaves, Highclere, Newbury, Berkshire, RG15 9QU

Abstract

An ideal I in a ring R is primal if whenever J1, …, Jn is a finite set of ideals of R with J1 … Jn = {0} then Ji ⊆ I for at least one i ∈ {1, …, n}. If the ring is commutative then is is easily shown that each primal ideal contains a prime ideal. In this paper it is shown that in a separable semi-simple Banach algebra each primal ideal contains a prime ideal, and that the space of minimal prime ideals is compact and extremally disconnected in the hull-kernel topology. An example is given of an inseparable C-algebra with a primal ideal which does not contain a prime ideal.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Archbold, R. J.. Topologies for primal ideals. J. London Math. Soc. (2) 36 (1987), 524542.CrossRefGoogle Scholar
[2]Archbold, R. J. and Batty, C. J. K.. On factorial states of operator algebras, III. J. Operator Theory 15 (1986), 5381.Google Scholar
[3]Archbold, R. J. and Somerset, D. W. B.. Quasi-standard C*-algebras. Math. Proc. Cambridge Phil. Soc. 107 (1990), 349360.CrossRefGoogle Scholar
[4]Beckhoff, F.. The minimal primal ideal space of a C*-algebra and local compactness. Can. Math. Bull. 34 (1991), 440446.CrossRefGoogle Scholar
[5]Belluce, L. P.. Spectral spaces and non-commutative rings. Comm. Alg. 19 (1991), 18551865.CrossRefGoogle Scholar
[6]Berberian, S. K.. Baer *-Rings (Springer-Verlag, 1972).CrossRefGoogle Scholar
[7]Dixon, P. G.. Semiprime Banach algebras. J. London Math. Soc. (2) 6 (1973), 676678.CrossRefGoogle Scholar
[8]Dow, A., Henriksen, M., Kopperman, R. D. and Vermeer, J.. The space of minimal prime ideals of C(X) need not be basically disconnected. Proc. A.M.S. 104 (1988), 317320.Google Scholar
[9]Feinstein, J. F.. Point derivations and prime ideals in R(X). Studia Math. 98 (1991), 235246.CrossRefGoogle Scholar
[10]Feinstein, J. F.. A non-trivial, strongly regular uniform algebra. J. London Math. Soc. (2) 45 (1992), 288300.CrossRefGoogle Scholar
[11]Gillman, L.. Convex and pseudoprime ideals in C(X), in General Topology and Applications, Proceedings of the 1988 Northeast Conference, ed. Shortt, R. M. (Marcel Dekker, 1990).Google Scholar
[12]Gillman, L. and Jerison, M.. Rings of Continuous Functions (Springer-Verlag, 1976).Google Scholar
[13]Gillman, L. and Kohls, C. W.. Convex and pseudoprime ideals in rings of continuous functions. Math. Z. 72 (1960), 399409.CrossRefGoogle Scholar
[14]Glimm, J.. A Stone–Weierstrass theorem for C*-algebras. Ann. of Math. 72 (1960), 216244.CrossRefGoogle Scholar
[15]Goodearl, K. R. and Warfield, R. B.. An Introduction to Noncommutative Noetherian Rings (Cambridge University Press, 1989).Google Scholar
[16]Halpern, H.. The maximal GCR ideal in an AW*-algebra. Proc. A.M.S. 17 (1966), 906914.Google Scholar
[17]Halpern, H.. Commutators in properly infinite von Neumann algebras. Trans. A.M.S. 139 (1969), 5573.CrossRefGoogle Scholar
[18]Henriksen, M.. Some sufficient conditions for the Jacobson radical of a commutative ring with identity to contain a prime ideal. Portugaliae Math. 36 (1977), 257269.Google Scholar
[19]Henriksen, M. and Jerison, M.. The space of minimal prime ideals of a commutative ring. Trans. A.M.S. 115 (1965), 110130.CrossRefGoogle Scholar
[20]Henriksen, M. and Kopperman, R. D.. A general theory of structure spaces with applications to spaces of prime ideals. Alg. Universalis 28 (1991), 349376.CrossRefGoogle Scholar
[21]Henriksen, M., Kopperman, R. D., Mack, J. and Somerset, D. W. B.. Joincompact spaces, continuous lattices and C*-algebras. (In preparation.)Google Scholar
[22]Johnstone, P. T.. Stone Spaces (Cambridge University Press, 1982).Google Scholar
[23]Keimel, K.. A unified theory of minimal prime ideals. Acta Math. Acad. Sci. Hungaricae 23 (1972), 5169.CrossRefGoogle Scholar
[24]Kist, J.. Minimal prime ideals in commutative semigroups. Proc. London Math. Soc. (3) 13 (1963), 3150.CrossRefGoogle Scholar
[25]McConnell, J. C. and Robson, J. C.. Noncommutative Noetherian Rings (Wiley-Interscience, 1987).Google Scholar
[26]Mason, G.. Prime ideals and quotient rings of reduced rings. Math. Japon. 34 (1989), 941956.Google Scholar
[27]Pedersen, G. K.. C*-algebras and their Automorphism Groups (Academic Press, 1979).Google Scholar
[28]Sikorski, R.. Boolean Algebras, 2nd edn. (Springer-Verlag, 1964).Google Scholar
[29]Simmons, H.. Reticulated rings. J. Algebra 66 (1980), 169192.CrossRefGoogle Scholar
[30]Somerset, D. W. B. and Willis, G. A.. On the closure of the prime radical of a Banach algebra. Proc. Edin. Math. Soc., 36 (1993), 421425.CrossRefGoogle Scholar
[31]Thakare, N. K. and Nimbhorkar, S. K.. Space of minimal prime ideals of a ring without nilpotent elements. J. Pure Appl. Algebra 27 (1983), 7585.CrossRefGoogle Scholar
[32]Thakare, N. K. and Nimbhorkar, S. K.. Prime strict ideals in Rickart *-rings. Indian J. Pure Appl. Math. 22 (1991), 6372.Google Scholar