Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T10:36:30.507Z Has data issue: false hasContentIssue false

Coulomb wave functions for low energies

Published online by Cambridge University Press:  24 October 2008

A. S. Meligy
Affiliation:
Faculty of Science, University of Alexandria, Egypt

Abstract

The irregular radial Coulomb wave function is expanded in a convergent series of Bessel functions in which the coefficients are expressed in powers of the energy and the argument of the Bessel functions depends on the radius only and not on the energy. This formulation is suitable for low-energy particles. The corresponding expansion for the regular Coulomb function can be deduced from previous work by Tricomi.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Abramowitz, M.Tables of Coulomb wave functions (National Bureau of Standards, Appl. Math. series, 17; Washington, 1952).Google Scholar
(2)Abramowtiz, M.J. Math. Phys. 33 (1954), 111.CrossRefGoogle Scholar
(3)Breit, G. and Hull, M.Phys. Rev. 80, (1950), 392.Google Scholar
(4)Breit, G. and Hull, M.Phys. Rev. 80, (1950), 561.CrossRefGoogle Scholar
(5)Buchholz, H.Die Konfluente Hypergeometrische Funktion. (Springer: Berlin, 1953).CrossRefGoogle Scholar
(6)Erdélyi, A. et al. Higher transcendental functions, I. (McGraw-Hill Book Company; New York, 1953).Google Scholar
(7)Fröberg, C.Rev. Mod. Phys. 27 (1955), 399.CrossRefGoogle Scholar
(8)Ham, F. S.Tables for the calculation of Coulomb wave functions (Office of Naval Research Technical Report No. 204, Cruft Laboratory, Harvard University; Cambridge, Mass., 1955).Google Scholar
(9)Meligy, A. S.Nuclear Phys. 5 (1958), 615.CrossRefGoogle Scholar
(10)Slater, L. J.Confluent hypergeometric functions (Cambridge, 1960).Google Scholar
(11)Whittaker, E. T. and Watson, G. N.Modern analysis (4th ed.) (Cambridge, 1927).Google Scholar
(12)Yost, F. L., Wheeler, J. A. and Breit, G.Phys. Rev. 49 (1936), 174.CrossRefGoogle Scholar