Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T06:15:28.278Z Has data issue: false hasContentIssue false

Filtrations for q-Young modules

Published online by Cambridge University Press:  24 October 2008

Stuart Martin
Affiliation:
Magdalene College, Cambridge, CB3 0AG

Abstract

We show that, over suitable rings, q-Young modules for the Hecke algebra of type A have a filtration by q-Specht modules. The multiplicities are also determined.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cline, E., Parshall, B. J. and Scott, L. L.. Finite-dimensional algebras and highest weight categories. J. reine angew. Math. 391 (1988), 8599.Google Scholar
[2]Dipper, R. and Donkin, S.. Quantum GLn. Proc. L.M.S. 63 (1991), 165211.CrossRefGoogle Scholar
[3]Dipper, R. and James, G. D.. Representations of Hecke algebras and general linear groups. Proc. L.M.S. 52 (1986), 2052.CrossRefGoogle Scholar
[4]Dipper, R. and James, G. D.. The q-Schur algebra. Proc. L.M.S. 59 (1989), 2350.CrossRefGoogle Scholar
[5]Dipper, R. and James, G. D.. q-tensor space and q-Weyl modules. Trans. A.M.S. 327 (1991), 251282.Google Scholar
[6]Donkin, S.. Rational representations of algebraic groups. LNM vol. 1140 (1985), Springer, Berlin.CrossRefGoogle Scholar
[7]Donkin, S.. On Schur algebras and related algebras II. J. Algebra 111 (1987), 354364.CrossRefGoogle Scholar
[8]Erdmann, K.. Symmetric groups and quasi-hereditary algebras, to appear.Google Scholar
[9]Green, J. A.. Locally finite representations. J. Algebra 41 (1976), 137171.CrossRefGoogle Scholar
[10]Green, J. A.. Polynomial representations of GLn. LNM vol. 830 (1980), Springer, Berlin.Google Scholar
[11]Martin, S.. Projective indecomposable modules for symmetric groups I. Quart. J. Math. Oxford (2) 44 (1993), 8799.CrossRefGoogle Scholar
[12]Parshall, B. J. and Wang, J-P.. Quantum linear groups. Mem. A.M.S. vol. 89 no. 143 (1991).Google Scholar