No CrossRef data available.
A formalization of an ℵ0-valued propositional calculus
Published online by Cambridge University Press: 24 October 2008
Extract
In 1930 Łukasiewicz (3) developed an ℵ0-valued prepositional calculus with two primitives called implication and negation. The truth-values were all rational numbers satisfying 0 ≤ x ≤ 1, 1 being the designated truth-value. If the truth-values of P, Q, NP, CPQ are x, y, n(x), c(x, y) respectively, then
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 49 , Issue 3 , July 1953 , pp. 367 - 376
- Copyright
- Copyright © Cambridge Philosophical Society 1953
References
REFERENCES
(1)Church, Alonzo. Introduction to mathematical logic (Ann. Math. Stud., Princeton, 1944).Google Scholar
(2)Henkin, Leon. The completeness of the first-order functional calculus. J. symbolic Logic, 14 (1949), 159–66.CrossRefGoogle Scholar
(3)Łukasiewicz, Jan and Tarski, Alfred. Untersuchungen über den Aussagenkalkül. C. R. Soc. Sci. Varsovie (3), 23 (1930), 30–50.Google Scholar
(4)Rosser, J. B. and Turquette, A. R.Axiom schemes for m-valued prepositional calculi. J. symbolic Logic, 10 (1945), 61–82.CrossRefGoogle Scholar
(5)Rosser, J. B. and Turquette, A. R.Axiom schemes for m-valued functional calculi of the first order. J. symbolic Logic, 13 (1948), 177–92.CrossRefGoogle Scholar
Rosser, J. B. and Turquette, A. R.Axiom schemes for m-valued functional calculi of the first order. J. symbolic Logic, 16 (1951), 22–34.CrossRefGoogle Scholar