Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T06:59:21.383Z Has data issue: false hasContentIssue false

The frame of smashing tensor-ideals

Published online by Cambridge University Press:  19 October 2018

PAUL BALMER
Affiliation:
UCLA Mathematics Department, Los Angeles, CA 90095-1555, U.S.A. e-mail: balmer@math.ucla.edu, url: http://www.math.ucla.edu/~balmer
HENNING KRAUSE
Affiliation:
Universität Bielefeld, Fakultät für Mathematik, Postfach 10 01 31, 33501 Bielefeld, Germany. e-mail: hkrause@math.uni-bielefeld.de, url: http://www.math.uni-bielefeld.de/~hkrause/
GREG STEVENSON
Affiliation:
School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow G12 8QQ. e-mail: gregory.stevenson@glasgow.ac.uk, url: http://www.maths.gla.ac.uk/~gstevenson/

Abstract

We prove that every flat tensor-idempotent in the module category Mod- of a tensor-triangulated category comes from a unique smashing ideal in . We deduce that the lattice of smashing ideals forms a frame.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Bal05] Balmer, P. The spectrum of prime ideals in tensor triangulated categories. J. Reine Angew. Math., 588 (2005), 149168.Google Scholar
[Bal10] Balmer, P. Tensor triangular geometry. In International Congress of Mathematicians, Hyderabad (2010), Vol. II. (Hindustan Book Agency, 2010), pages 85112.Google Scholar
[BD68] Bucur, I. and Deleanu, A. Introduction to the theory of categories and functors. With the collab. of Hilton, P. J. and Popescu, N. Pure and App. Math., Vol. XIX. (Interscience Publication John Wiley & Sons, Ltd., London-New York-Sydney, 1968).Google Scholar
[BD14] Boyarchenko, M. and Drinfeld, V. Character sheaves on unipotent groups in positive characteristic: foundations. Selecta Math. (N.S.), 20 (1) (2014), 125235.Google Scholar
[BF11] Balmer, P. and Favi, G. Generalised tensor idempotents and the telescope conjecture. Proc. Lond. Math. Soc. (3) 102 (6) (2011), 11611185.Google Scholar
[Bou79] Bousfield, A. K. The Boolean algebra of spectra. Comment. Math. Helv. 54 (3) (1979), 368377.Google Scholar
[Fre70] Freyd, P. Homotopy is not concrete. In The Steenrod Algebra and its Applications (Steenrod's Sixtieth Birthday Conf., Battelle Memorial Inst., Columbus, Ohio, 1970), Lecture Notes in Math. vol. 168, pages 2534 (Springer, Berlin, 1970).Google Scholar
[GZ67] Gabriel, P. and Zisman, M. Calculus of fractions and homotopy theory. Ergeb. Math. Grenzgeb., band 35 (Springer-Verlag, New York, 1967).Google Scholar
[Hop87] Hopkins, M. J. Global methods in homotopy theory. In Homotopy theory (Durham, 1985), volume 117 of London Math. Soc. Lect. Notes. pages 7396 (Cambridge University Press, 1987).Google Scholar
[HP99] Hovey, M. and Palmieri, J. H. The structure of the Bousfield lattice. In Homotopy invariant algebraic structures (Baltimore, MD, 1998), Contemp. Math. vol. 239 (Amer. Math. Soc., Providence, RI, 1999), pages 175196.Google Scholar
[HPS97] Hovey, M., Palmieri, J. H. and Strickland, N. P. Axiomatic stable homotopy theory. Mem. Amer. Math. Soc. 128 (610) (1997).Google Scholar
[Joh83] Johnstone, P. T. The point of pointless topology. Bull. Amer. Math. Soc. (N.S.) 8 (1983), 4153.Google Scholar
[Kra97] Krause, H. The spectrum of a locally coherent category. J. Pure Appl. Algebra 114 (3) (1997), 259271.Google Scholar
[Kra00] Krause, H. Smashing subcategories and the telescope conjecture–an algebraic approach. Invent. Math. 139 (1) (2000), 99133.Google Scholar
[Kra05] Krause, H. Cohomological quotients and smashing localisations. Amer. J. Math. 127 (6) (2005), 11911246.Google Scholar
[Nee01] Neeman, A. Triangulated categories. Annals of Math. Stud. vol. 148. (Princeton University Press, 2001).Google Scholar
[Ste16] Stevenson, G. A tour of support theory for triangulated categories through tensor triangular geometry. In Building Bridges Between Algebra and Topology (Birkhäuser, 2018), pp. 63101.Google Scholar
[Wol15] Wolcott, F. L. Variations of the telescope conjecture and Bousfield lattices for localised categories of spectra. Pacific J. Math. 276 (2) (2015), 483509.Google Scholar