Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-15T02:02:25.759Z Has data issue: false hasContentIssue false

Integrals involving Bessel functions and Whittaker functions

Published online by Cambridge University Press:  24 October 2008

R. K. Saxena
Affiliation:
Department of Mathematics, University of Rajasthan, Jaipur, India

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Notes
Copyright
Copyright © Cambridge Philosophical Society 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1)Bailey, W. N.Some infinite integrals involving Bessel functions. II. J. London Math. Soc. 11 (1936), 1620CrossRefGoogle Scholar
(2)Bailey, W. N.Some infinite integrals involving Bessel functions. Proc. London Math. Soc. 40 (1936), 3748CrossRefGoogle Scholar
(3)Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G.Tables of integral transforms. Vol. I (McGraw-Hill; New York, 1954).Google Scholar
(4)Goldstein, S.Operational representation of Whittaker's confluent hypergeometric function and Weber's parabolic cylinder functions. Proc. London Math. Soc. (2) 34 (1932), 103125CrossRefGoogle Scholar