Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T06:26:20.519Z Has data issue: false hasContentIssue false

A Monte Carlo method applied to the Heisenberg ferromagnet

Published online by Cambridge University Press:  24 October 2008

D. C. Handscomb
Affiliation:
Oxford University Computing Laboratory, 9 South Parks Road, Oxford

Abstract

Following on from a previous paper (5), we apply the new Monte Carlo method described there to the estimation of order parameters of a simple Heisenberg ferromagnet. By way of illustration, we include some results on the simple cubic lattice, comparing them with results obtained by conventional methods.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Dirac, P. A. M.The principles of quantum mechanics (3rd edition, Oxford, 1947).Google Scholar
(2)Dyson, F. J.Thermodynamic behavior of an ideal ferromagnet. Phys. Rev. 102 (1956), 12301244CrossRefGoogle Scholar
(3)Ehrman, J. R., Fosdick, L. D. and Handscomb, D. C.Computation of order parameters in an Ising lattice by the Monte Carlo method. J. Math. Phys. 1 (1960), 547558CrossRefGoogle Scholar
(4)Fosdick, L. D.Calculation of order parameters in a binary alloy by the Monte Carlo method. Phys. Rev. 116 (1959), 565573CrossRefGoogle Scholar
(5)Handscomb, D. C.The Monte Carlo method in quantum statistical mechanics. Proc. Cambridge Philos. Soc. 58 (1962), 594598CrossRefGoogle Scholar
(6)Handscomb, D. C.The Monte Carlo methods applicable to the Heisenberg ferromagnet (Thesis, University of Oxford, 1962).Google Scholar
(7)Heisenberg, W.Theorie des Ferromagnetismus. Z. Physik, 49 (1928), 619636CrossRefGoogle Scholar
(8)Ising, E.Beitrag zur Theorie des Ferromagnetismus. Z. Physik, 3 (1925), 253258CrossRefGoogle Scholar
(9)Metropolis, N., Rosenbluth, A. W. and M. N., , Teller, A. H. and E. Equations of state calculations by fast computing machines. J. Chem. Phys. 21 (1953), 10871092CrossRefGoogle Scholar
(10)Rushbrooke, G. S. and Wood, P. J.On the high-temperature susceptibility for the Heisenberg model of a ferromagnet. Proc. Phys. Soc. 68 (1955), 11611169CrossRefGoogle Scholar
(11)Rushbrooke, G. S. and Wood, P. J.On the Curie points and high-temperature susceptibilities of Heisenberg model ferromagnets. Molecular Phys. 1 (1958), 257283CrossRefGoogle Scholar
(12)Chung, K. L.Markov chains with stationary transition probabilities (Springer; Berlin, 1960).CrossRefGoogle Scholar