Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T01:48:51.920Z Has data issue: false hasContentIssue false

On Coulomb wave functions

Published online by Cambridge University Press:  24 October 2008

A. S. Meligy
Affiliation:
Faculty of Science, University of Alexandria, Alexandria, Egypt
E. M. El Gazzy
Affiliation:
Faculty of Science, University of Alexandria, Alexandria, Egypt

Abstract

The irregular radial Coulomb wave function in repulsive fields is expressed, for any angular momentum value, in series of Bessel functions of arbitrary order. Previous expansions, obtained for angular momenta zero and one, can now be obtained as special cases. The expansion can be most conveniently used for high-energy particles.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Whittaker, E. T. and Watson, G. N.Modern analysis (4th ed.) (Cambridge, 1927).Google Scholar
(2)Abbamowitz, M.Tables of Coulomb wave functions (National Bureau of Standards, App. Math, series 17; Washington, 1952).Google Scholar
(3)Meligy, A. S.Nuclear Phys. 5 (1958), 615.Google Scholar
(4)Abramowitz, M.J. Math. Phys. 33 (1954), 111.Google Scholar
(5)Breit, G. and Hull, M.Phys. Rev. 80 (1950), 561.Google Scholar
(6)Meligy, A. S.J. London Math. Soc. 37 (1962), 141.Google Scholar
(7)Meligy, A. S.Nuclear Phys. 1 (1956), 610.Google Scholar
(8)Meligy, A. S.Quart. J. Math. Oxford Ser. (2), 10 (1959), 202.Google Scholar
(9)Meligy, A. S.Proc. Cambridge Philos. Soc. 56 (1960), 233.Google Scholar
(10)Buchholz, H.Die konfluente Hypergeometrische Funktion (Springer: Berlin, 1953).CrossRefGoogle Scholar
(11)Slater, L. J.Confluent hypergeometric functions (Cambridge, 1960).Google Scholar
(12)Bailey, W. N.Generalized hypergeometric series (Cambridge, 1935).Google Scholar