Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Das, G.
and
Mishra, S. K.
1981.
A note on a theorem of Maddox on strong almost convergence.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 89,
Issue. 3,
p.
393.
Nishishiraho, Toshihiko
1982.
Multivariate Approximation Theory II.
p.
297.
Nishishiraho, Toshihiko
1982.
Saturation of multiplier operators in Banach spaces.
Tohoku Mathematical Journal,
Vol. 34,
Issue. 1,
Nishishiraho, Toshihiko
1983.
Convergence of positive linear approximation processes.
Tohoku Mathematical Journal,
Vol. 35,
Issue. 3,
Karakaya, Vatan
and
Şimşek, Necip
2004.
On lacunary invariant sequence spaces defined by a sequence of modulus functions.
Applied Mathematics and Computation,
Vol. 156,
Issue. 3,
p.
597.
Et, M.
Gökhan, A.
and
Altinok, H.
2006.
On statistical convergence of vector-valued sequences associated with multiplier sequences.
Ukrainian Mathematical Journal,
Vol. 58,
Issue. 1,
p.
139.
Savaş, Ekrem
2007.
On some new double sequence spaces defined by a modulus.
Applied Mathematics and Computation,
Vol. 187,
Issue. 1,
p.
417.
Bhardwaj, Vinod K.
and
Bala, Indu
2008.
Strong invariant A-summability with respect to a sequence of modulus functions in a seminormed space.
Demonstratio Mathematica,
Vol. 41,
Issue. 4,
Işik, Mahmut
2010.
Generalized Vector-Valued Sequence Spaces Defined by Modulus Functions.
Journal of Inequalities and Applications,
Vol. 2010,
Issue. 1,
p.
457892.
Başarır, Metin
Konca, Şükran
and
Gupta, Chaitan
2012.
On Some Lacunary Almost Convergent Double Sequence Spaces and Banach Limits.
Abstract and Applied Analysis,
Vol. 2012,
Issue. 1,
Sharma, S.K.
and
Esi, Ayhan
2013.
Some <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mrow><mml:mi mathvariant="script">I</mml:mi></mml:mrow></mml:math>-convergent sequence spaces defined by using sequence of moduli and n-normed space.
Journal of the Egyptian Mathematical Society,
Vol. 21,
Issue. 2,
p.
103.
Mursaleen, M.
Sharma, Sunil K.
and
Kılıçman, A.
2013.
Sequence Spaces Defined by Musielak-Orlicz Function over -Normed Spaces.
Abstract and Applied Analysis,
Vol. 2013,
Issue. ,
p.
1.
Savaş, Ekrem
2013.
Double almost lacunary statistical convergence of order α.
Advances in Difference Equations,
Vol. 2013,
Issue. 1,
Subramanian, Nagarajan
and
Balasubramanian, K.
2013.
Review article on $\chi^{2}$ sequence spaces defined by modulus and fuzzy numbers.
Boletim da Sociedade Paranaense de Matemática,
Vol. 31,
Issue. 2,
p.
83.
Savaş, Ekrem
2013.
Double almost statistical convergence of order α.
Advances in Difference Equations,
Vol. 2013,
Issue. 1,
Subramanian, N.
2014.
The modular sequence space of $\chi^{2}$.
Boletim da Sociedade Paranaense de Matemática,
Vol. 32,
Issue. 1,
p.
71.
Hardtke, Jan-David
2014.
On Convergence with respect to an Ideal and a Family of Matrices.
International Journal of Analysis,
Vol. 2014,
Issue. ,
p.
1.
Subramanian, N.
2014.
The almost lacunary $\chi^{2}$ sequence spaces defined by modulus.
Boletim da Sociedade Paranaense de Matemática,
Vol. 32,
Issue. 2,
p.
209.
Mursaleen, M.
and
Mohiuddine, S. A.
2014.
Convergence Methods for Double Sequences and Applications.
p.
1.
Subramanian, N.
2016.
Some sets of $\chi^{2}-$ summable sequences of Fuzzy Numbers Defined By A Modulus.
Boletim da Sociedade Paranaense de Matemática,
Vol. 34,
Issue. 1,
p.
53.