Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T17:36:24.139Z Has data issue: false hasContentIssue false

On the historical development of the theory of finite inhomogeneous Markov chains

Published online by Cambridge University Press:  24 October 2008

E. Seneta
Affiliation:
Australian National University, Canberra

Abstract

The main purpose of the note is to compare necessary and sufficient conditions for weak ergodicity of finite inhomogeneous Markov chains given by Doeblin (3) and Hajnal (4), the former paper being little known; and more generally to expand on the nature and consequences of Doeblin's approach as compared to Hajnal's in some detail. A consequence is some insight into the relation between various ‘coefficients of ergodicity’.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bernštein, S. N.Teoriya Veroiatnostei (Moscow, Leningrad, 1946).Google Scholar
(2)Dobrušin, R.L. Central limit theorem for non-stationary Markov chains, I, II. Theor. Probability Appl. 1 (1956), 6580, 329383 (English translation).Google Scholar
(3)Doeblin, W. Le cas discontinu des probabilités en chaίne. Publ. Fac. Sci. Univ. Masaryk (Brno), no. 236 (1937).Google Scholar
(4)Hajnal, J.Weak ergodicity in nonhomogeneous Markov chains. Proc. Cambridge Philos. Soc. 54 (1958), 233246.Google Scholar
(5)Iosifescu, M.On two recent papers on ergodicity in nonhomogeneous Markov chains. Ann. Math. Statist. 43 (1972), 17321736.Google Scholar
(6)Ostenc, É. Sur le principe ergodique dans les chaίnes de Markov à elements variables. C. R. Acad. Sci. Paris 199 (1934), 175176.Google Scholar
(7)Paz, A.Ergodic theorems for infinite probabilistic tables. Ann. Math. Statist. 41 (1970), 539550.Google Scholar
(8)Paz, A.Introduction to probabilistic automata (New York, Academic Press, 1971).Google Scholar
(9)Paz, A. and Reicsaw, M.Ergodic theorems for sequences of infinite stochastic matrices. Proc. Cambridge Philos. Soc. 63 (1967), 777784.Google Scholar
(10)Sarymsakov, T. A.On the theory of inhomogeneous Markov chains [in Russian]. Dokl. Akad. Nauk. Uzbek. S.S.R. 8 (1956), 37.Google Scholar
(11)Sarymsakov, T. A.On inhomogeneous Markov chains. Dokl. Akad. Nauk. S.S.S.R. 120 (1958), 465467.Google Scholar
(12)Sarymsakov, T. A. and Mustafin, H. A.On an ergodic theorem for inhomogeneous Markov chains [in Russian]. Sredneaziatskii Cos. Universitet im. V. I. Lenina: Trudy. Novaia seria, vyp. 74, Fiz-mat. nauki, kniga 15 (1958), pp. 138. Izd. A. N. Uzbekskoi S.S.R. Tashkent, 1957.Google Scholar
(13)Seneta, E.Non-negative matrices (London, Allen and Unwin, 1973). (In the Press.)Google Scholar
(14)Wolfowitz, J.Products of indecomposable, aperiodic, stochastic matrices. Proc. Amer. Math. Soc. 14 (1963), 733737.Google Scholar