1. It was shown by Barlotti(1) that the number, k, of points on a (k, n)-arc in a Galois plane S2, q, of order q, where n and q are coprime, satisfies
Regular arcs, in which all the points are of the same type have been studied by Basile and Brutti(2) and, for n = 3 by d'Orgeval(4). By means of an electronic computer Lunelli and Sce(5) have enumerated many arcs in Galois planes of low order. The object of this note is to show how the (11, 3)-arcs of S2, 5, none of which is regular, may be described using only geometrical properties.