Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T22:32:33.248Z Has data issue: false hasContentIssue false

On the theory of the liquid state

I. The statistical treatment of the thermodynamics of liquids by the theory of holes

Published online by Cambridge University Press:  24 October 2008

R. Fürth
Affiliation:
The University Edinburgh

Extract

The theory of holes in liquids, suggested in a previous paper, is developed by means of classical statistical mechanics, and it is shown that the principal thermodynamic properties of the liquid state can be derived in this way and that they are in numerical agreement with the experiments.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1941

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) See, for example, Ewald, P.Handbuch der Physik, 2nd ed. vol. 23, part 2 (Berlin, 1933).Google Scholar
(2) ‘Discussion on structure and molecular forces in liquids.’ Trans. Faraday Soc. 33 (1937).CrossRefGoogle Scholar
(3)Mott, N. F. and Gurney, R. W.Rep. Progress Phys. 5 (1939), 46.CrossRefGoogle Scholar
(4)Mayer, J., Ackermann, Ph. G. and Harrison, S. F.J. Chem. Phys. 5 (1937), 67; 5 (1937), 75; 6 (1938), 87; 6 (1938), 101.CrossRefGoogle Scholar
Born, M. and Fuchs, K.Proc. Roy. Soc. A, 166 (1938), 391.Google Scholar
(5)Born, M.Atomtheorie des festen Zustandes (Leipzig, 1923).CrossRefGoogle Scholar
Born, M. and Göppert-Mayer, M.Handbuch der Physik, 2nd ed. vol. 24, part 2 (Berlin, 1933).Google Scholar
(6)Born, M.J. Chem. Phys. 7 (1939), 591.CrossRefGoogle Scholar
(7)Eyring, H.J. Chem. Phys. 4 (1936), 283.CrossRefGoogle Scholar
Eyring, H. and Hirschfelder, J.J. Phys. Chem. 41 (1937), 249.CrossRefGoogle Scholar
Hirschfelder, J., Stevenson, D. and Eyring, H.J. Chem. Phys. 5 (1937), 896.CrossRefGoogle Scholar
Newton, R. F. and Eyring, H.Trans. Faraday Soc. 33 (1937), 73.CrossRefGoogle Scholar
(8)Lennard-Jones, J. E.Physica, 4 (1937), 941.CrossRefGoogle Scholar
Lennard-Jones, J. E. and Devonshire, A. F.Proc. Roy. Soc. A, 169 (1939), 317.Google Scholar
(9)Bragg, W. L. and Williams, E. J.Proc. Roy. Soc. A, 145 (1934), 699.Google Scholar
Fowler, R. H.Statistical mechanics, 2nd ed. (Cambridge, 1937), pp. 789 ff.Google Scholar
(10)Fürth, R., Ornstein, L. S. and Milatz, J. M. W.Proc. Amsterdam Acad. Sci. 42 (1939), 107.Google Scholar
(11)Fürth, R.Proc. Phys. Soc. 52 (1940), 768.CrossRefGoogle Scholar
(12)Frenkel, J.J. Chem. Phys. 7 (1939), 538.CrossRefGoogle Scholar
(13)Altar, W.J. Chem. Phys. 5 (1937), 577.CrossRefGoogle Scholar
(14)Brillouin, L.J. Phys. Radium 7 (1936), 153; Trans. Faraday Soc. 33 (1937); 54.CrossRefGoogle Scholar
(15)Landolt-Börnstein, . Physikalisch-Chemische Tabellen, 5 Aufl. (Berlin. 1923), 1. Erg. Band 1927, 2. Erg. Band 1931, 3. Erg. Band 1935–6.Google Scholar
(16)Eyring, H. and Hirschfelder, J.J. Phys. Chem. 41 (1937), 249.CrossRefGoogle Scholar
Gurney, R. W. and Mott, N. F.J. Chem. Phys. 6 (1938), 222.CrossRefGoogle Scholar
Rice, O. K.J. Chem. Phys. 6 (1938), 476.CrossRefGoogle Scholar
(17)Fürth, R.Proc. Cambridge Phil. Soc. 37 (1941), 34.CrossRefGoogle Scholar
(18)Born, M.Proc. Cambridge Phil. Soc. 36 (1940), 160.CrossRefGoogle Scholar
Misra, R. D.Proc. Cambridge Phil. Soc. 36 (1940), 173.CrossRefGoogle Scholar
(19)Schultze, F. A.Phys. Z. 26 (1925), 153.Google Scholar