Article contents
Permutation groups containing a regular abelian subgroup: the tangled history of two mistakes of Burnside
Published online by Cambridge University Press: 27 May 2019
Abstract
A group K is said to be a B-group if every permutation group containing K as a regular subgroup is either imprimitive or 2-transitive. In the second edition of his influential textbook on finite groups, Burnside published a proof that cyclic groups of composite prime-power degree are B-groups. Ten years later, in 1921, he published a proof that every abelian group of composite degree is a B-group. Both proofs are character-theoretic and both have serious flaws. Indeed, the second result is false. In this paper we explain these flaws and prove that every cyclic group of composite order is a B-group, using only Burnside’s character-theoretic methods. We also survey the related literature, prove some new results on B-groups of prime-power order, state two related open problems and present some new computational data.
MSC classification
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 168 , Issue 3 , May 2020 , pp. 613 - 633
- Copyright
- Copyright © Cambridge Philosophical Society 2019
References
REFERENCES
- 1
- Cited by