Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T20:15:35.456Z Has data issue: false hasContentIssue false

Quantum mechanics of the isotropic three-dimensional anharmonic oscillator

Published online by Cambridge University Press:  24 October 2008

I. J. Zucker
Affiliation:
Department of Physics, Battersea College of Technology, London, S.W. 11

Abstract

A method of determining numerically to any degree of accuracy the eigen-values of Hamiltonians in the form of power series is presented. The case of a spherically symmetric potential function of the form V = ar2 + br4 + cr6 is treated in detail.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Chaundy, T. W. and McLeod, J. B.Quart. J. Math. Oxford Ser. (2), 14 (1963), 205.CrossRefGoogle Scholar
(2)Coulson, C. A. and McWeeny, R.Proc. Cambridge Philos. Soc. 44 (1948), 413–22.CrossRefGoogle Scholar
(3)Dunham, J. L.Phys. Rev. 41 (1932), 713.CrossRefGoogle Scholar
(4)Epstein, P. S.Phys. Rev. 28 (1926), 695.CrossRefGoogle Scholar
(5)Erdélyi, A. et al. Higher transcendental functions. (McGraw-Hill; 1953).Google Scholar
(6)Landau, L. D. and Lifshitz, E. M.Quantum mechanics (Pergamon; 1959).Google Scholar
(7)Moshinsky, M. and Brody, T. A.Tables of transformation brackets (Mexico; 1960).Google Scholar
(8)Pauling, L. and Wilson, E. B.Introduction to quantum mechanics. (McGraw-Hill; 1935).Google Scholar
(9)Titchmarsh, E. C.Proc. Roy. Soc. London, Ser. A, 245 (1958), 147; 251 (1959), 46; 252 (1959), 436.Google Scholar