Published online by Cambridge University Press: 04 September 2014
We consider a class of uncertain non-linear systems preceded by unknown backlash-like hysteresis, which is modelled by a differential equation. We propose a new state feedback robust adaptive control scheme using a backstepping technique and properties of the differential equation. In this control scheme, we construct a new continuous function to design an estimator to estimate the unknown constant parameters and the unknown bound of a ‘disturbance-like’ term. The transient performance of the output tracking error can be guaranteed by the introduction of pre-estimates of the unknown parameters in our controller together with update laws. We do not require bounds on the ‘disturbance-like’ term or unknown system parameters in this scheme. The global stability of the closed-loop system can be proved.