Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T23:43:04.120Z Has data issue: false hasContentIssue false

A quantum random number generator certified by value indefiniteness

Published online by Cambridge University Press:  28 March 2014

ALASTAIR A. ABBOTT
Affiliation:
Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand Email: a.abbott@auckland.ac.nz; cristian@cs.auckland.ac.nz
CRISTIAN S. CALUDE
Affiliation:
Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand Email: a.abbott@auckland.ac.nz; cristian@cs.auckland.ac.nz
KARL SVOZIL
Affiliation:
Institut für Theoretische Physik, Vienna University of Technology, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria Email: svozil@tuwien.ac.at

Abstract

In this paper we propose a quantum random number generator (QRNG) that uses an entangled photon pair in a Bell singlet state and is certified explicitly by value indefiniteness. While ‘true randomness’ is a mathematical impossibility, the certification by value indefiniteness ensures that the quantum random bits are incomputable in the strongest sense. This is the first QRNG setup in which a physical principle (Kochen–Specker value indefiniteness) guarantees that no single quantum bit that is produced can be classically computed (reproduced and validated), which is the mathematical form of bitwise physical unpredictability.

We discuss the effects of various experimental imperfections in detail: in particular, those related to detector efficiencies, context alignment and temporal correlations between bits. The analysis is very relevant for the construction of any QRNG based on beam-splitters. By measuring the two entangled photons in maximally misaligned contexts and using the fact that two bitstrings, rather than just one, are obtained, more efficient and robust unbiasing techniques can be applied. We propose a robust and efficient procedure based on XORing the bitstrings together – essentially using one as a one-time-pad for the other – to extract random bits in the presence of experimental imperfections, as well as a more efficient modification of the von Neumann procedure for the same task. We also discuss some open problems.

Type
Paper
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, A. A. and Calude, C. S. (2012) Von Neumann normalisation of a quantum random number generator. Computability 1 5983.CrossRefGoogle Scholar
Abbott, A. A., Calude, C. S., Conder, J. and Svozil, K. (2012) Strong Kochen–Specker theorem and incomputability of quantum randomness. Physical Review A 86 (6)062109.CrossRefGoogle Scholar
Bechmann-Pasquinucci, H. and Peres, A. (2000) Quantum cryptography with 3-state systems. Physical Review Letters 85 (15)33133316.CrossRefGoogle ScholarPubMed
Berry, D. W., Jeong, H., Stobińska, M. and Ralph, T. C. (2010) Fair-sampling assumption is not necessary for testing local realism. Physical Review A 81 (1)012109.CrossRefGoogle Scholar
Billingsley, P. (1979) Probability and Measure, John Wiley and Sons.Google Scholar
Blum, M. (1986) Independent unbiased coin flips from a correlated biased source: a finite state Markov chain. Combinatorica 6 (2)97108.CrossRefGoogle Scholar
Born, M. (1969) Physics in My Generation, second edition, Springer.CrossRefGoogle Scholar
Cabello, A. (2008) Experimentally testable state-independent quantum contextuality. Physical Review Letters 101 (21)210401.CrossRefGoogle ScholarPubMed
Calude, C. S. (2002) Information and Randomness – An Algorithmic Perspective, second edition, Springer.CrossRefGoogle Scholar
Calude, C. S., Dinneen, M. J., Dumitrescu, M. and Svozil, K. (2010) Experimental evidence of quantum randomness incomputability. Physical Review A 82 (2)022102.CrossRefGoogle Scholar
Calude, C. S. and Svozil, K. (2008) Quantum randomness and value indefiniteness. Advanced Science Letters 1 (2)165168.CrossRefGoogle Scholar
Chaitin, G. J. (1977) Algorithmic information theory. IBM Journal of Research and Development 21 350–359, 496. (Reprinted in Chaitin, G. J. (1990) Information, Randomness and Incompleteness, second edition, World Scientific.)Google Scholar
Clauser, J. F. and Shimony, A. (1978) Bell's theorem: experimental tests and implications. Reports on Progress in Physics 41 18811926.CrossRefGoogle Scholar
Ekert, A. K. (1991) Quantum cryptography based on Bell's theorem. Physical Review Letters 67 661663.CrossRefGoogle ScholarPubMed
Fiorentino, M., Santori, C., Spillane, S. M., Beausoleil, R. G. and Munro, W. J. (2007) Secure self-calibrating quantum random-bit generator. Physical Review A 75 (3)032334.CrossRefGoogle Scholar
Gabizon, A. (2010) Deterministic Extraction from Weak Random Sources, Springer.Google Scholar
Garg, A. and Mermin, D. N. (1987) Detector inefficiencies in the Einstein–Podolsky–Rosen experiment. Physical Review D 35 (12)38313835.CrossRefGoogle ScholarPubMed
Garrison, J. C. and Chiao, R. Y. (2008) Quantum Optics, Oxford University Press.CrossRefGoogle Scholar
Hai-Qiang, M.et al. (2004) A random number generator based on quantum entangled photon pairs. Chinese Physics Letters 21 (10)19611964.CrossRefGoogle Scholar
Huang, Y.-F., Li, C.-F., Zhang, Y.-S., Pan, J.-W. and Guo, G.-C. (2003) Experimental test of the Kochen–Specker theorem with single photons. Physical Review Letters 90 (25)250401.CrossRefGoogle ScholarPubMed
Jennewein, T. (2009) Private communication to authors.Google Scholar
Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H. and Zeilinger, A. (2000) A fast and compact quantum random number generator. Review of Scientific Instruments 71 16751680.CrossRefGoogle Scholar
Kochen, S. and Specker, E. P. (1967) The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics (now Indiana University Mathematics Journal) 17 (1) 59–87. (Reprinted in Specker, E. P. (1970) Selecta, Birkhäuser 235263.)Google Scholar
Larsson, J.-A. (1998) Bell's inequality and detector inefficiency. Physical Review A 57 (5)33043308.CrossRefGoogle Scholar
Lindner, F.et al. (2005) Attosecond double-slit experiment. Physical Review Letters 95 (4)040401.CrossRefGoogle ScholarPubMed
Merali, Z. (2010) A truth test for randomness. Nature News (Published online 14 April 2010 – Nature – doi:10.1038/news.2010.181.)Google Scholar
Pan, J.-W., Bouwmeester, D., Daniell, M., Weinfurter, H. and Zeilinger, A. (2000) Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature 403 515519.CrossRefGoogle ScholarPubMed
Pauli, W. (1958) Die allgemeinen Prinzipien der Wellenmechanik. In: Flügge, S. (ed.) Handbuch der Physik. Band V, Teil 1. Prinzipien der Quantentheorie I, Springer 1168.Google Scholar
Pearle, P. M. (1970) Hidden-variable example based upon data rejection. Physical Review D 2 (8)14181425.CrossRefGoogle Scholar
Peres, A. (1978) Unperformed experiments have no results. American Journal of Physics 46 745747.CrossRefGoogle Scholar
Peres, Y. (1992) Iterating von Neumann's procedure for extracting random bits. Annals of Statistics 20 (1)590597.CrossRefGoogle Scholar
Pironio, S.et al. (2010) Random numbers certified by Bell's theorem. Nature 464 10211024.CrossRefGoogle ScholarPubMed
Rarity, J. G., Owens, M. P. C. and Tapster, P. R. (1994) Quantum random-number generation and key sharing. Journal of Modern Optics 41 24352444.CrossRefGoogle Scholar
Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L. and Zbinden, H. (2000) Optical quantum random number generator. Journal of Modern Optics 47 595598.Google Scholar
Svozil, K. (1990) The quantum coin toss – testing microphysical undecidability. Physics Letters A 143 433437.CrossRefGoogle Scholar
Svozil, K. (2009) Three criteria for quantum random-number generators based on beam splitters. Physical Review A 79 (5)054306.CrossRefGoogle Scholar
Svozil, K. (2011) Quantum value indefiniteness. Natural Computing 10 (4) pp 13711382.CrossRefGoogle Scholar
Von Neumann, J. (1951) Various techniques used in connection with random digits. National Bureau of Standards Applied Math Series 12 36–38. (Reprinted in Traub, A. H. (ed.) John von Neumann, Collected Works, (Vol. V), MacMillan 768–770.)Google Scholar
Wang, P. X., Long, G. L. and Li, Y. S. (2006) Scheme for a quantum random number generator. Journal of Applied Physics 100 (5)056107.CrossRefGoogle Scholar
Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. and Zeilinger, A. (1998) Violation of Bell's inequality under strict Einstein locality conditions. Physical Review Letters 81 50395043.CrossRefGoogle Scholar