Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T08:43:55.601Z Has data issue: false hasContentIssue false

Kolmogorov on the role of randomness in probability theory

Published online by Cambridge University Press:  28 March 2014

CHRISTOPHER P. PORTER*
Affiliation:
Department of Mathematics, Department of Philosophy, University of Notre Dame, Notre Dame, IN 46556, U.S.A. Email: cporter2@nd.edu

Abstract

In this paper, I discuss the extent to which Kolmogorov drew upon von Mises' work in addressing the problem of why probability is applicable to events in the real world, which I refer to as the problem of the applicability of probability, or the applicability problem for short. In particular, I highlight the role of randomness in Kolmogorov's account, and I argue that this role differs significantly from the role that randomness plays in von Mises' account.

Type
Paper
Copyright
Copyright © Published by Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Church, A. (1940) On the concept of a random sequence. Bulletin of the American Mathematical Society 46 130135.CrossRefGoogle Scholar
Kamke, E. (1932) Einführung in die Wahrscheinlichkeitstheorie, S. Hirzel, Leipzig.Google Scholar
Kamke, E. (1933) Über neuere Begründungen der Wahrscheinlichkeitsrechnung. Jahresbericht Deutsche Mathematiker Vereinigung 42 1427.Google Scholar
Kolmogorov, A. N. (1956) Foundations of the theory of probability, Chelsea Publishing Company, New York.Google Scholar
Kolmogorov, A. N. (1963a) On tables of random numbers. Sankhyā Series A 176–183. (Reprinted in Shiryayev, A. N. (ed.) Selected works of A. N. Kolmogorov Volume III: Information Theory and the Theory of Algorithms, Kluwer.)Google Scholar
Kolmogorov, A. N. (1963b) The theory of probability. In: Aleksandrov, A. D., Kolmogorov, A. N. and Lavrent'ev, M. A. (eds.) Mathematics: Its Content, Methods, and Meaning, volume 2, MIT Press 229264.Google Scholar
Kolmogorov, A. N. (1965) Three approaches to the definition of the notion of amount of information. Problemy Peredači Informacii 184–193. (Reprinted in Shiryayev, A. N. (ed.) Selected works of A. N. Kolmogorov Volume III: Information Theory and the Theory of Algorithms, Kluwer.)Google Scholar
Kolmogorov, A. N. (1983) On logical foundations of probability theory. In: Probability theory and mathematical statistics (Tbilisi, 1982). Springer-Verlag Lecture Notes in Mathematics 1021 15.CrossRefGoogle Scholar
Van Lambalgen, M. (1987) Random Sequences, Ph.D. thesis, University of Amsterdam.Google Scholar
Shafer, G. and Vovk, V. (2005) The origins and contributions of Kolmogorov's Grundbegriffe. Working Paper 4, probabilityandfinance.com.Google Scholar
Venn, J. (1866) The logic of chance: an essay on the foundations and province of the theory of probability, with especial reference to its logical bearings and its application to moral and social science, and to statistics, Macmillan and Company.Google Scholar
von Mises, R. (1919) Grundlagen der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift 5 (1–2)5299.CrossRefGoogle Scholar
von Mises, R. (1964) Mathematical theory of probability and statistics (edited and complemented by Geiringer, H.), Academic Press.Google Scholar
von Mises, R. (1981) Probability, statistics and truth (English edition), Dover Publications.Google Scholar
Wald, A. (1938) Die Widerspruchsfreiheit des Kollektivbegriffes. In: Colloque consacré au calcul des probabilités, Actualités Scientifiques et Industrielles 735, Hermann7999.Google Scholar