Published online by Cambridge University Press: 01 February 2009
Locally compact Hausdorff spaces generalise Euclidean spaces and metric spaces from ‘metric’ to ‘topology’. But does the effectivity on the latter (Brattka and Weihrauch 1999; Weihrauch 2000) still hold for the former? In fact, some results will be totally changed. This paper provides a complete investigation of a specific kind of space – computably locally compact Hausdorff spaces. First we characterise this type of effective space, and then study computability on closed and compact subsets of them. We use the framework of the representation approach, TTE, where continuity and computability on finite and infinite sequences of symbols are defined canonically and transferred to abstract sets by means of notations and representations.