Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-11T04:17:59.277Z Has data issue: false hasContentIssue false

Convex bodies, economic cap coverings, random polytopes

Published online by Cambridge University Press:  26 February 2010

I. Bárány
Affiliation:
The Mathematical Institute of the Hungarian Academy of Sciences, 1365 Budapest, P.O.B. 127, Hungary
D. G. Larman
Affiliation:
Department of Mathematics, University College London, Gower Street, London, WC1E 6BT
Get access

Extract

Let K be a convex compact body with nonempty interior in the d-dimensional Euclidean space Rd and let x1, …, xn be random points in K, independently and uniformly distributed. Define Kn = conv {x1, …, xn}. Our main concern in this paper will be the behaviour of the deviation of vol Kn from vol K as a function of n, more precisely, the expectation of the random variable vol (K\Kn). We denote this expectation by E (K, n).

Type
Research Article
Copyright
Copyright © University College London 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Arnold, V. I.. Statistics of integral convex polytopes. Functional Analysis and its Appl., 14 (1980), 13.Google Scholar
2.Bárány, I. and Füredi, Z.. On the shape of the convex hull of random points. Probab. Th. Rel. Fields, 77 (1988), 231240.CrossRefGoogle Scholar
3.Blaschke, W.. Vorlesungen uber Differentialgeometrie II. Affine Differentialgeometrie (Berlin, Springer, 1923).Google Scholar
4.Buchta, C.. Stochastische Approximation konvexer Polygone. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 67 (1984), 283304.CrossRefGoogle Scholar
5.Buchta, C.. Zufallige Polieder, eine Obersicht, Lecture Notes in Mathematics 1114 (Berlin, Springer, 1985), 113.Google Scholar
6.Buchta, C.. Private communication, 1987.Google Scholar
7.Danzer, L., Grunbaum, B. and Klee, V.. Helly's theorem and its relatives. Proc. Symp. Pure Math., vol. VIII, Convexity (AMS, Providence, RI, 1963).Google Scholar
8.Dwyer, R. A., On the convex hull of random points in a polytope. To appear in J. Applied Prob.Google Scholar
9.Ewald, G., Larman, L. G. and Rogers, C. A.. The directions of the line segments and of the r-dimensional balls on the boundary of a convex body in Euclidean space. Mathematika, 17 (1970), 120.CrossRefGoogle Scholar
10.Füredi, Z.. Random polytopes in the d-dimensional cube. Discrete and Comp. Geometry, 1 (1986), 315319.CrossRefGoogle Scholar
11.Groemer, H.. On the mean value of the volume of a random polytope in a convex set. Arch. Math., 25 (1974), 8690.CrossRefGoogle Scholar
12.Gruber, P. M.. Approximation of convex bodies, Convexity and its applications, ed. Gruber, P. M. and Wills, J. M. (Basel, Birkhauser, 1983).CrossRefGoogle Scholar
13.Gruber, P. M.. In most cases approximation is irregular. Rendiconti Sem. Mat. Torino, 41 (1983), 1933.Google Scholar
14.Kannan, R.. Private communication, 1987.Google Scholar
15.Komlós, J., Pintz, J. and Szemerédi, E.. A lower bound for Heilbronn's problem. J. London Math. Soc. (2), 25 (1982), 1324.CrossRefGoogle Scholar
16.Konyagin, S. B. and Sevastyanov, K. A.. Estimation of the number of vertices of a convex integral polyhedron in terms of its volume. Functional Analysis and its Appl., 18 (1984), 1315.Google Scholar
17.Macbeath, A. M.. A theorem on non-homogeneous lattices. Annals of Math. (2), 56 (1952), 269293.CrossRefGoogle Scholar
18.Rényi, A. and Sulanke, R.. Uber die konvexe Hulle von n zufallig gewahlten Punkten. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 2 (1963), 7584.CrossRefGoogle Scholar
19.Rényi, A. and Sulanke, R.. Uber die konvexe Hulle von n zufallig gewahlten Punkten II. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 3 (1963), 138184.CrossRefGoogle Scholar
20.Roth, K. F.. On a problem of Heilbronn, III. Proc. London Math. Soc. (3), 25 (1972), 543549.CrossRefGoogle Scholar
21.Schneider, R. and Wieacker, J. A.. Random polytopes in a convex body. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 52 (1980), 6973.CrossRefGoogle Scholar
22.Schneider, R.. Approximation of convex bodies by random polytopes. Aequationes Math., 32 (1987), 304310.CrossRefGoogle Scholar
23.Wendel, J. G.. A problem in geometric probability. Math. Scand., 11 (1962), 109111.CrossRefGoogle Scholar
24.Wieacker, J. A.. Einige Probleme der polyedrischen Approximation. Diplomarbeit (Frieburg i. Br., 1987).Google Scholar
25.Andrews, G. E.. A lower bound for the volumes of strictly convex bodies with many boundary points. Trans. Amer. Math. Soc., 106 (1965), 270279.CrossRefGoogle Scholar
26.Leichtweiss, K.. Uber eine Formel Blaschkes zur Affinoberfläche. Studia Math. Hung., 21 (1986), 453474.Google Scholar
27.Schneider, R.. Boundary structure and curvature of convex bodies. Proc. Geom. Symp., Siegen, 1978 (Birkhäuser, Basel, 1979), 1359.Google Scholar