Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-11T00:13:37.759Z Has data issue: false hasContentIssue false

On a question of regarding visibility of lattice points

Published online by Cambridge University Press:  26 February 2010

Sukumar Das Adhikari
Affiliation:
Mehta Research Institute, 10, Kasturba Gandhi Marg, (Old Kutchery Road), Allahabad-221 002, India
R. Balasubramanian
Affiliation:
Institute of Mathematical Sciences, Madras-600 113, India
Get access

Extract

Let Δn = {(x, y): x, y are integers 1 ≤ x, y ≤ n} be the n x n square array of integer lattice points in the plane.

MSC classification

Type
Research Article
Copyright
Copyright © University College London 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Abbott, H. L.. Some results in combinatorial Geometry. Discrete Mathematics, 9 (1974), 199204.CrossRefGoogle Scholar
2.Erdős, P.. On the integers relatively prime to n and on a number-theoretic function considered by Jacobsthal. Math. Scand., 10 (1962), 163170.CrossRefGoogle Scholar
3.Iwaniec, H.. On the error term in the linear sieve. Acta Arithmetica, 19 (1971), 130.CrossRefGoogle Scholar
4.Kanold, H. J.. Über eine zahlentheoretische Funktion von Jacobsthal. Math. Ann., 170 (1967), 314326.CrossRefGoogle Scholar
5.Stevens, H.. On Jacobsthal's g(n)-function. Math. Ann., 226 (1977), 9597.CrossRefGoogle Scholar
6.Vaughan, R. C.. On the order of magnitude of Jacobsthal's function. Proc. Edinburgh Math. Soc, 20 (1976-1977), 329331.CrossRefGoogle Scholar