Published online by Cambridge University Press: 21 December 2009
For a natural number n, let λ(n) denote the order of the largest cyclic subgroup of (ℤ/nℤ)*. For a given integer a, let Na(x) denote the number of n ≤ x coprime to a for which a has order λ(n) in (ℤ/nℤ)*. Let R(n) denote the number of elements of (ℤ/nℤ)* with order λ(n). It is natural to compare Na(x) with ∑n≤xR(n)/n. In this paper we show that the average of Na(x) for 1 ≤ a ≤ y is indeed asymptotic to this sum, provided y ≥ exp((2 + ε)(log x log log x)1/2), thus improving a theorem of the first author who had this for y ≥ exp((log x)3/4;). The result is to be compared with a similar theorem of Stephens who considered the case of prime numbers n.