Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-11T02:18:59.537Z Has data issue: false hasContentIssue false

The exact length of the Euclidean algorithm in [X]

Published online by Cambridge University Press:  26 February 2010

Arnold Knopfmacher
Affiliation:
Department of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa
John Knopfmacher
Affiliation:
Department of Mathematics, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa
Get access

Abstract

A study is made of the length L(h, k) of the Euclidean algorithm for determining the g.c.d. of two polynomials h, k in [X], a finite field. We obtain exact formulae for the number of pairs with a fixed length N which lie in a given range, as well as the average length and variance of the Euclidean algorithm for such pairs.

Type
Research Article
Copyright
Copyright © University College London 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Carlitz, L.. The arithmetic of polynomials in a Galois field. Amer. J. Math., 54 (1932), 3950.Google Scholar
2.Dixon, J. D.. The number of steps in the Euclidean algorithm. J. Number Th., 2 (1970), 414422.Google Scholar
3.Dixon, J. D.. A simple estimate for the number of steps in the Euclidean algorithm. Amer. Math. Monthly, 78 (1971), 374376.Google Scholar
4.Heilbronn, H.. On the average length of a class of finite continued fractions. In Number Theory and Analysis (Plenum Press, New York, 1969) 8796.Google Scholar
5.Kilian, H.. Zur mittleren Anzahl von Schritten beim euklidischen Algorithmus. Elem. Math. 38 (1983), 1115.Google Scholar
6.Knopfmacher, A. and Knopfmacher, J.. Length of Euclidean algorithm in Fq[X]. To appear in the Proc. 3rd Int. Congress on Fibonacci Numbers, Pisa, 1988.Google Scholar
7.Knopfmacher, J.. Abstract Analytic Number Theory (North-Holland/American Elsevier, 1975).Google Scholar
8.Plankensteiner, B.. Untersuchung iiber die Scrittanzahl des euklidischen Algorithmus bei Anwendung auf echte Brüche. Monatsh. Math., 74 (1970), 244257.Google Scholar
9.Porter, J. W.. On a theorem of Heilbronn. Mathematika, 22 (1975), 2028.Google Scholar