Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T21:08:22.541Z Has data issue: false hasContentIssue false

A lattice-point problem in hyperbolic space

Published online by Cambridge University Press:  26 February 2010

S. J. Patterson
Affiliation:
Mathematisches Institut der Universität, 34 Güttingen, Bunsenstr, 3/5.
Get access

Extract

In this paper we shall discuss the following problem. Let G be a Fuchsian group of the first kind acting on the upper half-plane H. For z1, z2 ∈ H we set

Type
Research Article
Copyright
Copyright © University College London 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fadeev, L. D.. “ Expansion in eigenfunctions of the Laplace operator on the fundamental domain of a discrete group on the Lobačevskil plane ”, Trans. Moscow Math. Soc, 17 (1967), 357386.Google Scholar
2. Huber, H.. “ Über eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der hyperbolischen Ebene ”, Comm. Math. Helv., 30 (1956), 2062.Google Scholar
3. Huber, H.. “ Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen ”, I, Math. Ann. 138 (1959), 126; II Math. Ann., 142 (1961), 385–398 and 143 (1961), 463–464.Google Scholar
4. Kubota, T.. Elementary theory of Eisenstein series. (Kodansha Ltd., Tokyo, (1973).Google Scholar
5. Neunhüffer, H.. Über die analytische Forsetzung von Poincaré-Reihen, Dissertation (Heidelberg).Google Scholar
6. Patterson, S. J..“ The limit set of a Fuchsian group, II ”, to appear.Google Scholar
7. Roecke, W., “ Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene ”. I, Math. Ann., 167 (1966), 292337; II, Math. Ann., 168 (1967), 261–324.CrossRefGoogle Scholar
8. Selberg, A.. “ Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series ”, J. Indian Math. Soc, 20 (1956), 4787.Google Scholar
9. Selberg, A.. “ Discontinuous groups and harmonic analysis ”, Proc. I.C.M. Stockholm, (1962).Google Scholar
10. Selberg, A.. “ On the estimation of Fourier coefficients of modular forms ”, Proc. Symp. Pure Math. VIII. (AMS, (1965).CrossRefGoogle Scholar
11. Whittaker, E. T. and Watson, G. N.. Modern Analysis (Cambridge, (1946).Google Scholar