Published online by Cambridge University Press: 21 December 2009
Let υ be a valuation on K with value group Gυ, residue field kυ, rank υ = t and K (x1, …, xn) be the field of rational functions over K with n variables. If G is the direct sum of G1 and d infinite cyclic groups where G1 is a totally ordered group containing Gυ as an ordered subgroup with [G1 : Gυ] < ∞ and k′ is a finite field extension of kυ then there exists a residual transcendental extension u of υ to K (x1, …, xn) such that rank u = t + d, Gu = G the algebraic closure of kυ in kυ is k′ and trans deg ku/kυ = n − d.