Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-11T00:26:45.241Z Has data issue: false hasContentIssue false

Sprindžuk's theorem and Hausdorff dimension

Published online by Cambridge University Press:  26 February 2010

R. C. Baker
Affiliation:
Royal Holloway College, Egham, Surrey
Get access

Extract

Let ζ be a complex number. For n = 1, 2 … we write ωn (ζ for the supremum of the numbers ω for which

for infinitely many polynomials P of degree ≦ n with integer coefficients (H (P) denotes the maximum of the absolute values of the coefficients of P).

Type
Research Article
Copyright
Copyright © University College London 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baker, A., “On a theorem of sprindŽuk”, Proc Roy Soc A, 292 (1966), 92104.Google Scholar
2.Baker, A. and Schmidt, W. M., “Diophantine approximation and Hausdorff dimension”, Proc. Lond. Math. Soc. (3), 21 (1970), 111.CrossRefGoogle Scholar
3.Cassels, J. W. S., An introduction to Diophantine approximation (Cambridge University Press 1957).Google Scholar
4.Kasch, F. and Volkmann, B., “Zur Mahlerschen Vermutung ūiber S-ZahlenMath.Ann., 136 1958, 442453.CrossRefGoogle Scholar
5.Sprindžuk, V. G., “Proof of the conjecture of Mahler on the measure of the set of S-numbersIzv. Akad. Nauk. SSSR (ser. mat.), 29 1965, 379436.Google Scholar
6.Volkmann, B., “Zur Mahlerschen Vermutung im KomplexenMath. Ann., 140 1960, 351359.CrossRefGoogle Scholar
7.Volkmann, B., “Zur metrischen Theorie der S-Zahlen IIReine Angew. Math., 213 1963, 5865.Google Scholar
8.Wirsing, E., “Approximation mit algebraischen Zahlen beschrĀnkten GradesJ. Reine Angew. Math., 206 1961, 6777.CrossRefGoogle Scholar