We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Human macrophages incubated for prolonged periods with mildly oxidized LDL (oxLDL) or cholesteryl ester-rich lipid dispersions (DISP) accumulate free and esterified cholesterol within large, swollen lysosomes similar to those in foam cells of atherosclerosis. The cholesteryl ester (CE) accumulation is, in part, the result of inhibition of lysosomal hydrolysis due to increased lysosomal pH mediated by excessive lysosomal free cholesterol (FC). To determine if the inhibition of hydrolysis was long lived and further define the extent of the lysosomal defect, we incubated THP-1 macrophages with oxLDL or DISP to produce lysosome sterol engorgement and then chased with acetylated LDL (acLDL). Unlike oxLDL or DISP, CE from acLDL normally is hydrolyzed rapidly. Three days of incubation with oxLDL or DISP produced an excess of CE in lipid-engorged lysosomes, indicative of inhibition. After prolonged oxLDL or DISP pretreatment, subsequent hydrolysis of acLDL CE was inhibited. Coincident with the inhibition, the lipid-engorged lysosomes failed to maintain an acidic pH during both the initial pretreatment and subsequent acLDL incubation. This indicates that the alterations in lysosomes were general, long lived, and affected subsequent lipoprotein metabolism. This same phenomenon, occurring within atherosclerotic foam cells, could significantly affect lesion progression.
Transition metal dichalcogenides (TMD) are widely used as self-lubricating material either as oil additive or directly as thin films. Magnetron sputtering is a deposition method allowing depositing such films with high density and adhesion. However, their spread use in practical applications is still hindered since their excellent sliding properties are deteriorated in the presence of humidity and under high contact pressures. MoSe2, one of the members of TMD family recently studied, has been co-sputtered with carbon in order to improve the mechanical and tribological properties when compared to pure MoSe2 films.
Two-photon excitation microscopy has become the standard technique for high resolution deep tissue and intravital imaging. It provides intrinsic three-dimensional resolution in combination with increased penetration depth compared to single-photon confocal microscopy. This article will describe the basic physical principles of two-photon excitation and will review its multiple applications to cardiovascular imaging, including second harmonic generation and fluorescence laser scanning microscopy. In particular, the capability and limitations of multiphoton microscopy to assess functional heterogeneity on a cellular scale deep within intact, Langendorff-perfused hearts are demonstrated. It will also discuss the use of two-photon excitation-induced release of caged compounds for the study of intracellular calcium signaling and intercellular dye transfer.
Disposable coordinate standard (CS) chips were fabricated by the ejection of melted polystyrene into a metal mold. The CS chip surface was divided into four parts different in height and width. The edge lines of these parts could be recognized as straight lines 2 μm in width in the microscope view and used as the X and Y axes for the culture dish. The CS chip was attached on the bottom of a culture dish outside. Then the dish was set on the microscope stage and moved by means of a motorized automatic stage. The X-Y coordinates of many single-cells in a culture dish were registered, respectively. Once registered, any single-cell could instantly be brought to the center of the microscope view even after displacing the dish from the stage for a while and setting it again on the stage. Therefore, experimenters can easily search any single-cell in any culture dish on any microscope at any time. Such a system is remarkably useful for various modes of single-cell experiment and named “Suguwaculture,” which means “instantly” (“sugu” in Japanese) + “recognizable” (“wakaru” in Japanese) + “culture” (during culture).
Understanding the Synthesis and Properties of Nanostructures and Nanomaterials
The optimum imaging of an object structure at the sub-angstrom length scale requires precise adjustment of the lens aberrations of a high-resolution instrument up to the fifth order. A least-squares optimization of defocus aberration C1, third-order spherical aberration C3, and fifth-order spherical aberration C5 yields two sets of aberration coefficients for strong phase contrast up to the information limit: one for variable C1 and C3, at fixed C5, another for variable C1, C3, and C5. An additional correction to the defocus aberration, dependent on object thickness, is described, which becomes important for the use of image simulation programs in predicting optimum high-resolution contrast from thin objects at the sub-angstrom scale. For instruments with a sub-angstrom information limit the ultimate structure resolution, the power to resolve adjacent atom columns in a crystalline object, depends on both the instrumental pointspread and an object pointspread due to finite width of the atomic column potentials. A simulation study on a simple double-column model yields a range for structure resolutions, dependent on the atomic scattering power, from 0.070 nm down to 0.059 nm, for a hypothetical 300-kV instrument with an information limit of 0.050 nm.
Light-emitting diodes (LEDs) can be easily and inexpensively integrated into modern light microscopes. There are numerous advantages of LEDs as illumination sources; most notably, they provide brightness and spectral control. We demonstrate that for transmitted light imaging, an LED can replace the traditional tungsten filament bulb while offering longer life; no color temperature change with intensity change; reduced emission in the infrared region, which is important for live cell imaging; and reduced cost of ownership. We show a direct substitution of the typical tungsten bulb with a commercially available LED and demonstrated the color stability by imaging a histology section over a wide range of light intensities. For fluorescent imaging, where the typical illumination sources are mercury or xenon lamps, we demonstrate that LEDs offer advantages of providing a longer lifespan, having a more constant intensity output over time, more homogeneous illumination, and significantly lower photon dose. Our LED equipped system was used to image and deconvolve dual fluorescently labeled cells, as well as image cells undergoing mitosis expressing green fluorescent protein–histone 2B complex. The timing of the stages of mitosis is well established as an indicator of cell viability.
Understanding the Synthesis and Properties of Nanostructures and Nanomaterials
We propose a simple and practical solution to remove artificial contrast inhibiting direct interpretation of atomic arrangements in aberration-corrected TEM. The method is based on a combination of “image subtraction” for elimination of nonlinear components in images and newly improved “image deconvolution” for proper compensation of nonflat phase contrast transfer function. The efficiency of the method is shown by experimental and simulation data of typical materials such as gold, silicon, and magnesium oxide. The hypothetical results from further improvements of TEM instruments are also simulated. It is concluded that we can approach actual atomic structures by using the present method, that is, a proper combination of a Cs corrector, image subtraction, and image deconvolution processes.
Biofilms are assemblages of microorganisms and their associated extracellular products at an interface and typically with an abiotic or biotic surface. The study of the morphology of biofilms is important because they are associated with processes of biofouling, corrosion, catalysis, pollutant transformation, dental caries, drug resistance, and so forth. In the literature, biofilms have been examined by atomic force microscopy (AFM), which has proven to be a potent tool to study different aspects of the biofilm development on solid surfaces. In this work, we used AFM to investigate topographical changes during the development process of Enterococcus faecalis biofilms, which were generated on sterile cellulose nitrate membrane (CNM) filters in brain heart infusion (BHI) broth agar blood plates after 24, 36, 72, 192, and 360 h. AFM height images showed topographical changes due to biofilm development, which were used to characterize several aspects of the bacterial surface, such as the presence of extracellular polymeric substance, and the biofilm development stage. Changes in the development stage of the biofilm were shown to correlate with changes in the surface roughness as quantified through the mean roughness.
The high sensitivity and spatial resolution enabled by two-photon excitation fluorescence lifetime imaging microscopy/fluorescence resonance energy transfer (2PE-FLIM/FRET) provide an effective approach that reveals protein-protein interactions in a single cell during stimulated exocytosis. Enhanced green fluorescence protein (EGFP)–labeled synaptosomal associated protein of 25 kDa (SNAP25A) and red fluorescence protein (mRFP)–labeled Rabphillin 3A (RPH3A) were co-expressed in PC12 cells as the FRET donor and acceptor, respectively. The FLIM images of EGFP-SNAP25A suggested that SNAP25A/RPH3A interaction was increased during exocytosis. In addition, the multidimensional (three-dimensional with time) nature of the 2PE-FLIM image datasets can also resolve the protein interactions in the z direction, and we have compared several image analysis methods to extract more accurate and detailed information from the FLIM images. Fluorescence lifetime was fitted by using one and two component analysis. The lifetime FRET efficiency was calculated by the peak lifetime (τpeak) and the left side of the half-peak width (τ1/2), respectively. The results show that FRET efficiency increased at cell surface, which suggests that SNAP25A/RPH3A interactions take place at cell surface during stimulated exocytosis. In summary, we have demonstrated that the 2PE-FLIM/FRET technique is a powerful tool to reveal dynamic SNAP25A/RPH3A interactions in single neuroendocrine cells.
Molecular dynamics simulations are performed to model milling via a focused ion beam (FIB). The goal of this investigation is to examine the fundamental dynamics associated with the use of FIBs, as well as the phenomena that govern the early stages of trench formation during the milling process. Using a gallium beam to bombard a silicon surface, the extent of lateral damage (atomic displacement) caused by the beam at incident energies of both 2 and 30 keV is examined. These simulations indicate that the lateral damage is several times larger than the beam itself and that the mechanism responsible for the formation of a V-shaped trench is due to both the removal of surface material, and the lateral and horizontal migration of subsurface silicon atoms toward the vacuum/crater interface. The results presented here provide complementary information to experimental images of trenches created during milling with FIBs.
Guiera senegalensis J. F. Gmel. (Combretaceae) is one of the most important West African medicinal plants, often used to treat a variety of microbial infections. The most frequently used plant part is the leaf, its medicinal use being corroborated by several in vitro antimicrobial activity studies. However, quality criteria for pharmaceutical use, including botanical identification, are not yet determined. Aiming the establishment of such criteria, the present work deepens today's knowledge on G. senegalensis leaf morphology and anatomy, the anatomical characters of both leaf transversal section and powdered leaves being hereby presented for the first time. The most useful characters for identification purposes are leaf isobilateral organization, with similar upper and lower surfaces and a palisade parenchyma on both surfaces; trichome insertion points on both epidermis, surrounded by polar arrangements of cells; tomentose indumentum on the upper epidermis consisting of compartmented and uniseriated trichomes with long, curved, or straight terminal cells; brown scales, isolated or inserted into the epidermis, formed by radially arranged cells surrounding a central cell, with a more or less circular form and a conspicuous base; calcium oxalate cluster crystals, isolated or inserted into the palisade parenchyma and absent in lateral veins.
High dielectric constant important for functional electronic applications have been reported in the Sr1-1.5xYxTiO3 ceramic system with a maximum value for x = 0.01 coincident with the maximum grain size. This observation points to a possible correlation between the dielectric response and the microstructure of these ceramics. A solid solubility limit around x = 0.04 was reported recently by Fu et al., although the second phase was observed by X-ray diffraction only for x = 0.07. Therefore, the structure, microstructure and local composition of Sr1-1.5xYxTiO3 ceramics (x = 0 − 0.05) prepared by conventional mixed oxide method is investigated in this work by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy facilities.
A significant portion of Mesozoic amber is fully opaque. Biological inclusions in such amber are invisible even after polishing, leading to potential bias in paleoecological and phylogenetic studies. Until now, studies using conventional X-ray microtomography focused on translucent or semi-opaque amber. In these cases, organisms of interest were visualized prior to X-ray analyses. It was recently demonstrated that propagation phase contrast X-ray synchrotron imaging techniques are powerful tools to access invisible inclusions in fully opaque amber. Here we describe an optimized synchrotron microradiographic protocol that allowed us to investigate efficiently and rapidly large amounts of opaque amber pieces from Charentes (southwestern France). Amber pieces were imaged with microradiography after immersion in water, which optimizes the visibility of inclusions. Determination is not accurate enough to allow precise phylogenetic studies, but provides preliminary data on biodiversity and ecotypes distribution; phase contrast microtomography remains necessary for precise determination. Because the organisms are generally much smaller than the amber pieces, we optimized local microtomography by using a continuous acquisition mode (sample moving during projection integration). As tomographic investigation of all inclusions is not practical, we suggest the use of a synchrotron for a microradiographic survey of opaque amber, coupled with microtomographic investigations of the most valuable organisms.
A series of Polynesian pearls has been investigated with particular attention to the structural and compositional patterns of the early developmental stages of the pearl layer. These initial steps in pearl formation bear witness of the metabolic changes that have occurred during the pearl-sac formation. The resulting structurally and biochemically complex structures have been investigated using a variety of techniques that provide us with information concerning both mineral phases and the organic components. Results are discussed with respect to our understanding of the biomineralization mechanisms, as well as for the grafting process.
The relation between image resolution and information transfer is explored. It is shown that the existence of higher frequency transfer in the image is just a necessary but not sufficient condition for the achievement of higher resolution. Adopting a two-point resolution criterion, we suggest that a 10% contrast level between two features in an image should be used as a practical definition of resolution. In the context of scanning transmission electron microscopy, it is shown that the channeling effect does not have a direct connection with image resolution because sharp channeling peaks do not move with the scanning probe. Through a quantitative comparison between experimental image and simulation, a Fourier-space approach is proposed to estimate defocus and sample thickness. The effective atom size in Z-contrast imaging depends on the annular detector's inner angle. Therefore, an optimum angle exists for the highest resolution as a trade-off between reduced atom size and reduced signal with limited information transfer due to noise.