Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T04:47:48.421Z Has data issue: false hasContentIssue false

Thebaite-(NH4), (NH4,K)3Al(C2O4)(PO3OH)2(H2O), a new phosphate–oxalate mineral from the Rowley mine, Arizona, USA

Published online by Cambridge University Press:  16 March 2021

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California90007, USA
Mark A. Cooper
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
Aaron J. Celestian
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California90007, USA
Barbara P. Nash
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah84112, USA
Joe Marty
Affiliation:
5199 East Silver Oak Road, Salt Lake City, Utah84108, USA
*
*Author for correspondence: Anthony R. Kampf, E-mail: akampf@nhm.org

Abstract

Thebaite-(NH4), (NH4,K)3Al(C2O4)(PO3OH)2(H2O), is a new mineral species (IMA2020-072) from the Rowley mine, Maricopa County, Arizona, USA. It occurs in an unusual bat-guano-related, post-mining assemblage of phases that include a variety of vanadates, phosphates, oxalates and chlorides, some containing NH4+. Other secondary minerals found in association with thebaite-(NH4) are antipinite, vanadinite and at least one other new mineral. Crystals of thebaite-(NH4) are colourless blades up to ~0.1 mm in length. The streak is white, lustre is vitreous, Mohs hardness is 1½–2, tenacity is brittle and fracture is splintery. There are two good cleavages in the [010] zone, probably {100} and {10$\bar{2}$}. The calculated density is 2.093 g⋅cm–3. Thebaite-(NH4) is optically biaxial (–) with α = 1.490(2), β = 1.534(2), γ = 1.570(2) (white light); 2V = 82.7(5)°; slight r > v dispersion; and orientation X = b, Y ^ c = 13° in obtuse β. Electron microprobe analysis gave the empirical formula [(NH4)2.12K0.69Na0.20]Σ3.01(Al0.84Fe3+0.11V3+0.04)Σ0.99(C2O4)[(P0.98Si0.02)O3OH]2(H2O), with the C, N and H contents constrained by the crystal structure. Raman spectroscopy confirmed the presence of NH4 and C2O4. Thebaite-(NH4) is monoclinic, P21/c, with a = 11.156(9), b = 6.234(6), c = 18.651(16) Å, β = 102.928(15)°, V = 1264.2(19) Å3 and Z = 4. The structural unit in the crystal structure of thebaite-(NH4) (R1 = 0.0612 for 863 Io > 2σI reflections) is a double-strand chain of corner-sharing AlO6 octahedra and PO3OH tetrahedra decorated by additional PO3OH tetrahedra and C2O4 groups. The decorated chains connect to one another through bonds to NH4+ and K+ and through hydrogen bonds.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Peter Leverett

References

Catti, M. and Franchini-Angela, M. (1976) Hydrogen bonding in the crystalline state. Structure of Mg3(NH4)2(HPO4)4(H2O)8 (hannayite), and crystal chemical relationships with schertelite and struvite. Acta Crystallographica, B32, 28422848.10.1107/S056774087600900XCrossRefGoogle Scholar
Colmenero, F. (2019) Structural, spectroscopic, and thermodynamic characterization of ammonium oxalate monohydrate mineral using theoretical solid-state methods. Journal of Physics and Chemistry of Solids, 125, 3142.10.1016/j.jpcs.2018.10.004CrossRefGoogle Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O⋅⋅⋅O hydrogen bonds. Acta Crystallographica, B44, 341344.10.1107/S0108768188001648CrossRefGoogle Scholar
Frost, R.L. (2004) Raman spectroscopy of natural oxalates. Analytica Chimica Acta, 517, 207214.10.1016/j.aca.2004.04.036CrossRefGoogle Scholar
Frost, R.L., Locke, A. and Martens, W.N. (2008) Synthesis and Raman spectroscopic characterisation of the oxalate mineral wheatleyite Na2Cu2+(C2O4)2⋅2H2O. Journal of Raman Spectroscopy, 39, 901908.10.1002/jrs.1932CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
García-Rodríguez, L., Rute-Pérez, Á., Piñero, J.R. and González-Silgo, C. (2000) Bond-valence parameters for ammonium-anion interactions. Acta Crystallographica, B56, 565569.10.1107/S0108768100002615CrossRefGoogle Scholar
Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C. and Weaver, R. (2004) Results from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a spindle stage. The Microscope, 52, 2339.Google Scholar
Hatert, F. (2007) Crystal structure of trisodium iron diphosphate, Na2.88Fe(PO4)2, a synthetic phosphate with hannayite-type heteropolyhedral chains. Zeitschrift für Kristallographie, 222, 68.Google Scholar
Kampf, A.R., Colombo, F., Simmons, W.B., Falster, A.U. and Nizamoff, J.W. (2010) Galliskiite, Ca4Al2(PO4)2F8⋅5H2O, a new mineral from the Gigante granitic pegmatite, Córdoba province, Argentina. American Mineralogist, 95, 392396.10.2138/am.2010.3395CrossRefGoogle Scholar
Kampf, A.R., Cooper, M.A., Nash, B.P., Cerling, T., Marty, J., Hummer, D.R., Celestian, A.J., Rose, T.P. and Trebisky, T.J. (2017) Rowleyite, [Na(NH4,K)9Cl4][V5+,4+2(P,As)O8]6n[H2O,Na,NH4,K,Cl], a new mineral with a mesoporous framework structure. American Mineralogist, 102, 10371044.Google Scholar
Kampf, A.R., Celestian, A.J., Nash, B.P. and Marty, J. (2019a) Phoxite, (NH4)2Mg2(C2O4)(PO3OH)2(H2O)4, the first phosphate-oxalate mineral. American Mineralogist, 104, 973979.10.2138/am-2019-6991CrossRefGoogle Scholar
Kampf, A.R., Cooper, M.A., Rossman, R.R., Nash, B.P., Hawthorne, F.C. and Marty, J. (2019b) Davidbrownite-(NH4), (NH4,K)5(V4+O)2(C2O4)[PO2.75(OH)1.25]4⋅3H2O, a new phosphate-oxalate mineral from the Rowley mine, Arizona, USA. Mineralogical Magazine, 83, 869877.10.1180/mgm.2019.56CrossRefGoogle Scholar
Kampf, A.R., Cooper, M.A., Celestian, A.J., Nash, B.P. and Marty, J. (2021) Thebaite-(NH4), IMA 2020-072. CNMNC Newsletter 59; Mineralogical Magazine, 85, 278281.Google Scholar
Kolitsch, U. and Schwendtner, K. (2005) Octahedral–tetrahedral framework structures of InAsO4⋅H2O and PbIn(AsO4)(AsO3OH). Acta Crystallographica, C61, i86i89.Google Scholar
Luan, L., Li, J., Chen, C., Lin, Z. and Huang, H. (2015) Solvent-free synthesis of crystalline metal phosphate oxalates with a (4,6)-connected fsh topology. Inorganic Chemistry, 54, 93879389.10.1021/acs.inorgchem.5b01569CrossRefGoogle ScholarPubMed
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.10.2113/gscanmin.45.5.1307CrossRefGoogle Scholar
Mills, S.J., Birch, W.D., Kampf, A.R., Christy, A. G., Pluth, J.J., Pring, A., Raudsepp, M. and Chen, Y. (2010a) Kapundaite, (Na,Ca)2Fe3+4(PO4)4(OH)3⋅5H2O, a new phosphate species from Toms quarry, South Australia: description and structural relationship to mélonjosephite. American Mineralogist, 95, 754760.10.2138/am.2010.3466CrossRefGoogle Scholar
Mills, S.J., Kolitsch, U., Miyawaki, R., Hatert, F., Porier, G., Kampf, A.R., Matsubara, S. and Tillmanns, E. (2010b) Pb3Fe3+2(PO4)4(H2O), a new octahedral-tetrahedral framework structure with double-strand chains. European Journal of Mineralogy, 22, 595604.10.1127/0935-1221/2010/0022-2048CrossRefGoogle Scholar
Peterson, K.I. and Pullman, D.P. (2016) Determining the structure of oxalate anion using infrared and Raman spectroscopy coupled with Gaussian calculations. Journal of Chemical Education, 93, 11301133.10.1021/acs.jchemed.6b00118CrossRefGoogle Scholar
Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” Pp. 3l75 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Wilson, W.E. (2020) The Rowley mine, Painted Rock Mountains, Maricopa County, Arizona. Mineralogical Record, 51, 181226.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material

Download Kampf et al. supplementary material(File)
File 296 KB
Supplementary material: File

Kampf et al. supplementary material

Table S1

Download Kampf et al. supplementary material(File)
File 23.4 KB