Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T15:26:28.042Z Has data issue: false hasContentIssue false

Uranoclite, a new uranyl chloride mineral from the Blue Lizard mine, San Juan County, Utah, USA

Published online by Cambridge University Press:  31 March 2020

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA90007, USA
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
Travis A. Olds
Affiliation:
Section of Minerals and Earth Sciences, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, Pennsylvania15213, USA
Barbara P. Nash
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, UT84112, USA
Joe Marty
Affiliation:
5199 East Silver Oak Road, Salt Lake City, UT84108, USA
*
*Author for correspondence: Anthony R. Kampf, Email: akampf@nhm.org

Abstract

The new mineral uranoclite (IMA2020-074), (UO2)2(OH)2Cl2(H2O)4, was found in the Blue Lizard mine, San Juan County, Utah, USA, where it occurs as tightly intergrown aggregates of irregular yellow crystals in a secondary assemblage with gypsum. The streak is very pale yellow and the fluorescence is bright green–white under 405 nm ultraviolet light. Crystals are translucent with vitreous lustre. The tenacity is brittle, the Mohs hardness is ~1½, the fracture is irregular. The mineral is soluble in H2O and has a calculated density of 4.038 g⋅cm–3. Electron microprobe analyses provided (UO2)2(OH)2.19Cl1.81(H2O)4. The six strongest powder X-ray diffraction lines are [dobs Å(I)(hkl)]: 8.85(38)(002), 5.340(100)(200, 110), 5.051(63)($\bar{2}$02), 4.421(83)(112, 004, 202), 3.781(38)($\bar{2}$12) and 3.586(57)(014, $\bar{2}$04). Uranoclite is monoclinic, P21/n, a = 10.763(8), b = 6.156(8), c = 17.798(8) Å, β = 95.656(15)°, V = 1173.5(18) Å3 and Z = 4. The structure is the same as that of synthetic (UO2)2(OH)2Cl2(H2O)4 in which the structural unit is a dimer consisting of two pentagonal bipyramids that share an equatorial OH–OH edge. The dimers are linked to one another only by hydrogen bonding. This is the second known uranyl mineral containing essential Cl and the first in which Cl coordinates to U6+.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Sergey V Krivovichev

References

Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.10.1016/0022-2860(89)80140-1CrossRefGoogle Scholar
Bullock, J.I. and Parret, F.W. (1970) The low frequency infrared and Raman spectroscopic studies of some uranyl complexes: the deformation frequency of the uranyl ion. Canadian Journal of Chemistry, 48, 30953097.10.1139/v70-520CrossRefGoogle Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: Insights into an expanded structural hierarchy of crystal structures. The Canadian Mineralogist, 43, 18391894.10.2113/gscanmin.43.6.1839CrossRefGoogle Scholar
Čejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Pp. 521622 in: Uranium: Mineralogy, Geochemistry and the Environment (Burns, P.C. and Ewing, R.C., editors). Reviews in Geochemistry, Vol. 38. Mineralogical Society of America, Washington D.C.10.1515/9781501509193-017CrossRefGoogle Scholar
Chenoweth, W.L. (1993) The Geology and Production History of the Uranium Deposits in the White Canyon Mining District, San Juan County, Utah. Utah Geological Survey Miscellaneous Publication, 93–3.Google Scholar
Colmenero, F., Plášil, J., Timón, V. and Čejka, J. (2020) Full crystal structure, hydrogen bonding and spectroscopic, mechanical and thermodynamic properties of mineral uranopilite. RSC Advances, 10, 31947.10.1039/D0RA04596ACrossRefGoogle Scholar
Frost, R.L., Weier, M.L., Martens, W.N., Kloprogge, J.T. and Kristóf, J. (2005) Thermo-raman spectroscopic study of the uranium mineral sabugalite. Journal of Raman Spectroscopy, 36, 797805.10.1002/jrs.1366CrossRefGoogle Scholar
Frost, R.L., Čejka, J. and Weier, M.L. (2007) Raman spectroscopic study of the uranyl oxyhydroxide hydrates: Becquerelite, billietite, curite, schoepite and vandendriesscheite. Journal of Raman Spectroscopy, 38, 460466.10.1002/jrs.1669CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Huys, D., Van Deun, R., Pattison, P., Van Meervelt, L. and Van Hecke, K. (2010) Redetermination of di-μ-hydroxido-bis [diaquachloridodioxidouranium (VI)] from single-crystal synchrotron data. Acta Crystallographica, E66, i11.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. and Cejka, J. (2015a) Fermiite, Na4(UO2)(SO4)3-3H2O and oppenheimerite, Na2(UO2)(SO4)2-3H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 11231142.10.1180/minmag.2015.079.5.8CrossRefGoogle Scholar
Kampf, A.R., Kasatkin, A.V., Čejka, J. and Marty, J. (2015b) Plášilite, Na(UO2)(SO4)(OH)⋅2H2O, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Journal of Geosciences, 60, 110.10.3190/jgeosci.184CrossRefGoogle Scholar
Kampf, A.R., Plášil, J., Olds, T.A., Nash, B.P. and Marty, J. (2021) Uranoclite, IMA 2020-074. CNMNC Newsletter 59; Mineralogical Magazine, 85, 278–281, https://doi.org/10.1180/mgm.2021.5Google Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O–H⋅⋅⋅O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.10.1007/BF03354882CrossRefGoogle Scholar
Lussier, A.J., Lopez, R.A. and Burns, P.C. (2016) A revised and expanded structure hierarchy of natural and synthetic hexavalent uranium compounds. The Canadian Mineralogist, 54, 177283.10.3749/canmin.1500078CrossRefGoogle Scholar
Mandarino, J.A. (1976) The Gladstone-Dale relationship – Part 1: derivation of new constants. The Canadian Mineralogist, 14, 498502.Google Scholar
Plášil, J., Kampf, A.R., Kasatkin, A.V. and Marty, J. (2014) Bluelizardite, Na7(UO2)(SO4)4Cl(H2O)2, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Journal of Geosciences, 59, 145158.10.3190/jgeosci.159CrossRefGoogle Scholar
Plášil, J., Kampf, A.R., Škoda, R. and Čejka, J. (2018) Nollmotzite, Mg[UV(UVIO2)2O4F3]⋅4H2O, the first natural uranium-oxide containing fluorine. Acta Crystallographica, B74, 362369.Google Scholar
Pouchou, J.-L. and Pichoir, F. (1991) Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model “PAP.” Pp. 3175 in: Electron Probe Quantitation. Springer US, Boston, MA.10.1007/978-1-4899-2617-3_4CrossRefGoogle Scholar
Zachariasen, W.H. (1978) Bond lengths in oxygen and halogen compounds of d and f elements. Journal of Less Common Metals, 62, 17.10.1016/0022-5088(78)90010-3CrossRefGoogle Scholar
Supplementary material: File

Kampf et al. supplementary material

Table S1

Download Kampf et al. supplementary material(File)
File 22.5 KB