Published online by Cambridge University Press: 21 February 2011
A new organoaluminum polymer (EtAINH)n(Et2AlNH2)m·AlEt3 derived from triethylaluminum and ammonia, is thermoplastic at elevated temperatures and a glassy solid at ambient temperature. As a thermoplastic it can be processed in certain shapes, solidified, cured and transformed to dense aluminum nitride with retention of its shape. Aluminum nitride fibers are prepared by melt spinning the polymer, pyrolyzing in ammonia and at high temperature in nitrogen. The AlN microstructure forms as very fine particles at 400–600°C, coarsens at higher temperature, and densifies at 1600–1800 °C into polycrystalline AlN with submicron grains. Mechanical strength, thermal expansion and dielectric constant are consistent with bulk ceramic values. Initial thermal conductivity deduced from composite measurements is 82 W/m°K in fibers containing 0.5 to 1.0 percent oxygen.