Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-29T23:34:28.539Z Has data issue: false hasContentIssue false

Ceramic Optical Package: Material Requirements and Guidelines for Material Selection

Published online by Cambridge University Press:  21 February 2011

M. F. Yan
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. W. Rhodes
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Recently Lightwave Device Packaging Department at AT&T Bell Laboratories has demonstrated that ceramic materials can provide cost effective and high quality packages to house optical and electronic components for lightwave communication applications. In this paper we examine the material requirements for optical packages. We also study the material properties of metals and ceramics with a potential application in optical packages. In particular, we review hermeticity, thermal conductivity, thermal expansion coefficient, dielectric constant, electrical resistivity, sintering temperature and mechanical strength of these materials. Our study will provide a data base and useful guidelines for designers to make uniformed decisions on material selection for optical package. We also review the mixing rules to predict the resultant property of a composite from the known attributes of its constituents and the use of new composite materials will provide a new degree of flexibility in the optical package design.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Smeltz, P. D., “Ceramic Applications in Laser Packaging”, Proceedings of International Symposium on Ceramic Substrates and Packages, Denver, CO, October 18–21 (1987).Google Scholar
2.Smeltz, P. D. and Holbrook, W. R., “Design of the Multilayer Ceramic Package for AT”, Proceedings of International Symposium on Ceramic Substrates and Packages, Denver, CO, October 18–21 (1987).Google Scholar
3.Thomson, J., Buck, R., Smeltz, P. and Holbrook, “Manufacture of Multilayer Ceramic Packages for Astrotec Lightwave Transmitter”, Proceedings of International Symposium on Ceramic Substrates and Packages, Denver, CO, October 18–21 (1987).Google Scholar
4.Kingery, W. D., Bowen, H. K. and Uhlmann, D. R., “Introduction to Ceramics”, John Wiley & Sons, N.Y. (1976).Google Scholar
5.Schwartz, B., “Review of Multilayer Ceramics for Microelectronic Packaging”, J. Phys. Chem. Solids, Vol.45 [10] 10511068 (1984).Google Scholar
6.Blodgett, A. J. and Barbour, D. R., “Thermal Conduction Module: A High Performance Multilayer Ceramic Package”, IBM J. Res. Develop. 26 [1] 3036 (1982).Google Scholar
7.Ho, C. W., Chance, D. A., Bajorek, C. H. and Acosta, R. E.”, Thin Thin-Film Module as a High-Performance Semiconductor Package”, IBM J. Res. Develop. 26 [3] 286296 (1982).Google Scholar
8.Bordia, R. K. and Raj, R., “Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate”, J. Am. Ceram. Soc. 68 [6] 287–92 (1985).Google Scholar
9.Paladino, A. E., “Temperature-Compensated MgTi2O5-TiO2 Dielectrics”, J. Am. Ceram. 54 [3] 168–69 (1971).Google Scholar
10.Yan, M. F., Chesney, J. B. Mac, Nagel, S. R. and Rhodes, W. W., “Sintering of Optical Wave-Guide Glasses”, J. Mat. Sci. 15 13711378 (1980).Google Scholar
11.Geiss, E. A., Fletcher, J. P. and Herron, L. W., “Isothermal Sintering of Cordierite-Type Glass Powders”, J. Am. Ceram. Soc. 67 [8] 549552 (1984).Google Scholar
12.Mussler, B. H. and Shafer, M. W., “Preparation and Properties of Mullite-Cordierite Composites”, Ceram. Bull. 63 [5] 705714 (1984).Google Scholar
13.Kurokawa, Y., Utsumi, K., Takamizawa, H., Kamata, T. and Noguchi, S., “AIN substrates with High Thermal Conductivity”, IEEE Trans. CHMT–8 [2], 6 (1985).Google Scholar
14.Prochazka, S. and Greskovich, C., “Effect of Some Impurities on Sintering Si3N4”, pp. 489502 in “Proc. Int. Symposium on Factors in Densification and Sintering of Oxide and Non-oxide Ceramics”. Edited by Somiya, S. and Saito, S., Assoc. for Sci. Doc. Information, Tokyo Inst. Technology, Ookayama, Meguro, Tokyo, Japan (1979).Google Scholar
15.Prochazka, S., Johnson, C. A. and Giddings, R. A., “Atmosphere Effects in Sintering of Silicon Carbide”, pp. 361381, in “Proc. Int. Symposium on Factors in Densification and Sintering of Oxide and Non-oxide Ceramics”. Edited by Somiya, S. and Saito, S., Assoc. for Sci. Doc. Information, Tokyo Inst. Technology, Ookayama, Meguro, Tokyo, Japan (1979).Google Scholar
16.Maeda, K., Miyoshi, T., Takeda, Y., Nakamura, K., Ogihara, S. and Ura, M., “Grain Boundary Effect in Highly Resistive SiC Ceramics with High Thermal Conductivity”, pp. 260268. Advances in Ceramics vol.7. Edited by Yan, M. F. and Heuer, A. H., Am. Ceram. Soc., Columbus, Ohio (1983).Google Scholar
17.Evans, A. G. and Charles, E. A., “Fracture Toughness Determinations by Indentation”, J. Am. Ceram. Soc. 59 [7–8] 371372 (1976).Google Scholar
18.Swain, M. V. and Rose, L. R. F., “Strength Limitations of Transformation-Toughened Zirconia Alloys”, J. Am. Ceram. Soc. 69 [7] 511–18 (1986).Google Scholar
19.Garvie, R. C., Hannink, R. H. and Pascoe, R. T., “Ceramic Steels ?”, Nature (London) 258, 703 (1975).Google Scholar
20.Tressler, R. E., Langensiepen, R. A. and Bradt, R. C., “Surface-Finish Effects on the Strength-vs-Grain Size Relation in Polycrystalline A12O3, J. Am. Ceram. Soc. 57 [5] 226–27 (1974).Google Scholar
21.Cranmer, D. C., Tressler, R. E. and Bradt, R. C., “Surface Finish Effects and the Strength-Grain Size Relation in SiC”, J. Am. Ceram. Soc. 60 [5–6] 230–32 (1977).Google Scholar
22.Kawai, M., Abe, H. and Nakayama, J., “The Effect of Surface Roughness on the Strength of Silicon Nitride”, pp. 545556 in “Proc. Int. Symposium on Factors in Densification and Sintering of Oxide and Non-oxide Ceramics”, edited by Somiya, S. and Saito, S., Assoc. for Sci. Dco. Information, Tokyo Inst. Technology, Ookayama, Megino, Tokyo, Japan (1979).Google Scholar
23.Terwilliger, G. R., “Properties of Sintered Si3N4, J. Am. Ceram. Soc. 57 [1] 48–9 (1974).Google Scholar
24.Alumina as a Ceramic Material; edited by Gitzen, W. H., The American Ceramic Society, Columbus, OH (1970).Google Scholar
25.Mazdiyasni, K. S. and Brown, L. M., “Synthesis and Mechanical Properties of Stoichiometric Am. Ceram. Soc. 55 [11] 548–52 (1972).Google Scholar
26.Pletka, R. J. and Wiederhorn, S. M., –A Comparison of Failure Predictions by Strength and Fracture Mechanics Techniques”, J. Mat. Sci. 17 [5] 1247–68 (1982).Google Scholar
27.Doremus, R. H. pp. 281295, “Glass Science”, John Wiley & Sons, N.Y. (1973).Google Scholar
28.Berman, R., pp. 384, “Physical Properties of Diamond”, Oxford University Press, Oxford (1965).Google Scholar
29.Slack, G. A., “Nonmetallic crystals with High Thermal Conductivity”, J. Phys. Chem. Solids 34 321–35 (1973).Google Scholar
30.Ho, C. Y., Powell, R. W. and Liley, P. E., U.S. Nat. Bureau Standards, Rept. NSRDS-NBS16 (1968).Google Scholar
31.Touloukian, Y. S., Powell, R. W., Ho, C. Y. and Klemens, P. G., “Thermophysical Properties of Matters - Thermal Conductivity”, Vols. 1 and 2. IFI/Plenum, N.Y. (1970).Google Scholar
32.McMillan, P. W., “Glass Ceramics”, Second Edition, Academic Press (1979).Google Scholar
33.Touloukian, Y. S., Kirby, R. K., Taylor, R. E. and Lee, T. Y. R., “Thermophysical Properties of Matter - Thermal Expansion”, Vol.13, IFI/Plenum, N.Y. (1977).Google Scholar
34.Metcalfe, B. L. and Sant, J. H., “The Synthesis, Microstructure and Physical Properties of High Purity Mullite”, Trans. Br. Ceram. Soc. 74 [6] 193201 (1975).Google Scholar
35. Data Sheet by Corning, “Properties of Glasses and Glass-Ceramics”.Google Scholar
36.Evans, D. L., Fischer, G. R., Geiger, J. E. and Martin, F. W., “Thermal Expansions and Chemical Modifications of Cordierite”, J. Am. Ceram. Soc. 63 [11–12] 629–34 (1980).Google Scholar