Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T09:30:31.209Z Has data issue: false hasContentIssue false

Multilayer Analysis by Focused MeV Ion Beam

Published online by Cambridge University Press:  21 February 2011

M. Takai
Affiliation:
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
A. Kinomura
Affiliation:
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
M. Izumi
Affiliation:
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
K. Matsunaga
Affiliation:
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
K. Inoue
Affiliation:
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
K. Gamo
Affiliation:
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
M. Satou
Affiliation:
Government Industrial Research Institute Osaka, Ikeda, Osaka 563, Japan
S. Namba
Affiliation:
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
Get access

Abstract

A high-energy (MeV) helium ion beam has been focused down to 1 μm by a combination of piezo-driven objective slits and a magnetic quadrupole doublet. Rutherford backscattering (RBS) mapping techniques using focused MeV ion beams were, for the first time, applied to multilayered structures of metals, isolated with insulators, representing a test structure for multilayered wiring or interconnections of integrated circuits to nondestructively analyze the imperfection of the structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Takai, M., Gamo, K., Masuda, K. and Namba, S.: Japan. J. Appl. Phys. 12, 1926 (1973)Google Scholar
2.Takai, M., Gamo, K., Masuda, K. and Namba, S.: Japan. J. Appl. Phys. 14, 1935 (1975)Google Scholar
3.Backscatterinq Spectrometry, edited by Chu, W.K., Mayer, J.W. and Nicolet, M.A. (Academic Press, New York, 1978)Google Scholar
4.Legge, G.J.F.: Nucl. Instrum. and Methods. 197, 243 (1982)Google Scholar
5.Nobiling, R.: Nucl. Instrum. and Methods. 218, 197 (1983)Google Scholar
6.Bayerl, P. and Eichinger, P.: Nucl. Instrum. and Methods. 149, 663 (1978)Google Scholar
7.Kneis, H., Martin, B., Nobiling, R., Povh, B. and Traxel, K.: Nucl. Instrum. and Methods. 197, 79 (1982)Google Scholar
8.Takai, M., Matsunaga, K., Inoue, K., Izumi, M., Gamo, K., Satou, M., and Namba, S., Japan. J. Appl. Phys. 26, L550 (1987)Google Scholar
9.Takai, M., Kinomura, A., Inoue, K., Matsunaga, K., Izumi, M., Gamo, K., Namba, S., and Satou, M., in Proc. of the Ist Intern. Conf. on Nuclear Microprobe Technoloqy and Applications, edited by Grime, G.W. and Watt, F. (to be published in Nucl. Instrum. and Methods 1988)Google Scholar
10.Kinomura, A., Takai, M., Inoue, K., Matsunaga, K., Izumi, M., Matsuo, T., Gamo, K., Namba, S., and Satou, M., in Proc. of the 12th Intern. Conf. on Atomic Collisions in Solids, edited by F. Fujimoto (to be published in Nucl. Instrum. and Methods 1988)Google Scholar