Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T02:21:55.801Z Has data issue: false hasContentIssue false

Recent Advances in Thin Film Multilayer Interconnect Technology for IC Packaging

Published online by Cambridge University Press:  21 February 2011

Ronald J. Jensen*
Affiliation:
Honeywell Sensors and Signal Processing Laboratory, 10701 Lyndale Avenue South, Bloomington, MN 55420
Get access

Abstract

A high-performance packaging technology being developed at Honeywell and a number of other companies uses thin-film processes to pattern high-density interconnections in multiple layers of a high-conductivity conductor (e.g., copper) and a polymer dielectric, primarily polyimide. This paper describes the physical characteristics and unique advantages of this thin film multilayer (TFML) interconnect technology; it then summarizes the results of recent work done at Honeywell in processing TFML structures, assessing the stability and reliability of the materials system, and fabricating test vehicles and demonstration packages.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jensen, R. J., Cummings, J. P., Vora, H., IEEE Trans. Components, Hybrids and Manuf. Technol. CHMT–7, 383393 (1984).Google Scholar
2.Jensen, R. J. in Polymers for High Technology: Electronics and Photonics, edited by Bowden, M. J. and Turner, R. S., ACS Symposium Series 346, (American Chemical Society, Washington, D.C., 1987) pp. 466483.Google Scholar
3.Jensen, R. J., Proc. ASM Third Conference on Electronic Packaging (ASM International, Metals Park, OH, 1987) pp. 25–31.Google Scholar
4.Watari, T., Murano, H., IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT–7, 462467 (1985).Google Scholar
5.MacDonald, J. F., Steckl, A. J., Neugebauer, C. A., Carlson, R. O., Bergendahl, A. S., J. Vac. Sci. Technol. A4, 31273138 (1986).Google Scholar
6.Ho., C. W., in VLSI Electronics: Microstructure Science, edited by Einspruch, N. G. (Academic, New York, 1982) Vol.5, Chapter 3.Google Scholar
7.Tsunetsugu, H., Takagi, A., Moriya, K., Int. J. Hybrid Microelectronics 8, 2126 (1985).Google Scholar
8.Takasago, H., Takada, M., Adachi, K., Endo, A., Yamada, K., Makita, T., Gofuku, E., Onishi, Y., Proc. 36th Electronic Components Conf., 1986, 481–487.Google Scholar
9.Sullivan, C. T., Roth, M. C., Budzynski, T., Proc. SPIE, O-E/Fibers, August, 1987.Google Scholar
10.Speerschneider, C. J., Belcourt, F. J., Jensen, R. J., Smeby, J. M., Proc. VHSIC Packaging Conference, 1987, 131–143.Google Scholar
11.Jensen, R. J., Douglas, R. B., Smeby, J. M., Moravec, T. J., Proc. VHSIC Packaging Conference, 1987, 193–205.Google Scholar
12.Deutsch, A. S., Schulz, R., Proc. Sixth Int. Elec. Packaging Conf., 1986, 331–339.Google Scholar
13.Yeh, J. T. C., J. Vac. Sci. Technol. A4, 653 (1986).Google Scholar
14.Moylan, C. R., Chuang, T. J., Extended Abstr. ECS Fall Meeting, 1987, Abstr. 436.Google Scholar
15.Baum, T. H., J. Electrochem. Soc. 134, 2616 (1987).Google Scholar
16.Douglas, R. B., Smeby, J. M., Proc. 37th Electronic Components Conference, 1987, 197–201.Google Scholar
17.Belcourt, F. J., Lane, T. A., Jensen, R. J., Proc. 37th Electronic Components Conference, 1987, 614–622.Google Scholar
18.Kompelein, D. J., Moravec, T. J., DeFlumere, M., Proc. Int. Symp. Microelectronics, 1986, 749–757.Google Scholar