Increased demand for low cost energy storage options has expanded the scope of Na+ batteries considerably; and with the growing interest in Na-based chemistries, the importance of high voltage positive electrodes is quickly realized as the Na/Na+ redox introduces lower operating voltages as compared to Li/Li+ based electrochemical cells. The 4.7V LiMn1.5Ni0.5O4 spinel has exhibited considerable properties as a high voltage Li+ positive electrode, with a host structure (λ-Mn0.75Ni0.25O2) that may provide an analogous high voltage Na+ positive electrode. Structural and electrochemical properties of NaxMn1.56Ni0.44O4 and NaxMn2O4 are investigated for the first time[1] utilizing ex-situ, in-situ X-ray diffraction, and high-resolution electrochemical techniques to provide an insightful study of the Na+ insertion mechanism.