Published online by Cambridge University Press: 22 January 2016
If U=U(0), U(i) is a maximal subgroup of U(i + 1) and U(n) = V, then we term the U(i) a densest chain connecting U and V; and n is the length of this chain. The subgroup U of V will furthermore be termed an n-uniserial subgroup of V if there exists one and only one densest chain connecting U and V and if its length is n. The principal aim of this note is to give characterizations of dedekind groups [ = groups all of whose subgroups are normal] in terms of the normality of uniserial subgroups. We quote one of our results: