Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-29T04:59:21.804Z Has data issue: false hasContentIssue false

Computing certain Gromov-Witten invariants of the crepant resolution of ℙ(1, 3, 4, 4)

Published online by Cambridge University Press:  11 January 2016

Samuel Boissière
Affiliation:
Laboratoire J. A. Dieudonné UMR CNRS 6621 Université de Nice Sophia-Antipolis, Parc Valrose 06108 Nice, France, samuel.boissiere@unice.fr
Étienne Mann
Affiliation:
Université de Montpellier 2 CC 5149 Place Eugène, Bataillon 34 095, Montpellier France, emann@math.univ-montp2.fr
Fabio Perroni
Affiliation:
Mathematisches Institut Lehrstuhl Mathematik VIII Universitätstraβe, 30 95447 Bayreuth, Germany, fabio.perroni@uni-bayreuth.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove a formula computing the Gromov-Witten invariants of genus zero with three marked points of the resolution of the transversal A3-singularity of the weighted projective space ℙ(1,3,4,4) using the theory of deformations of surfaces with An-singularities. We use this result to check Ruan’s conjecture for the stack ℙ(1,3,4,4).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2011

References

[1] Abramovich, D. and Vistoli, A., Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), 2775.Google Scholar
[2] Boissiere, S., Mann, E., and Perroni, F., The cohomological crepant resolution conjecture for P(1,3,4,4), Internat. J. Math. 20 (2009), 791801.CrossRefGoogle Scholar
[3] Boissiere, S., Mann, E., and Perroni, F., A model for the orbifold Chow ring of weighted projective spaces, Comm. Algebra 37 (2009), 503514.Google Scholar
[4] Borisov, L. A., Chen, L., and Smith, G. G., The orbifold Chow ring of toric Deligne-Mumford stacks, J. Amer. Math. Soc. 18 (2005), 193215.Google Scholar
[5] Brieskorn, E., Über die Auflösung gewisser Singularitäten von holomorphen Abbildun-gen, Math. Ann. 166 (1966), 76102.Google Scholar
[6] Bryan, J. and Graber, T., “The crepant resolution conjecture” in Algebraic Geometry, Part 1 (Seattle, 2005), Proc. Sympos. Pure Math. 80, Amer. Math. Soc, Providence, 2009, 2342.Google Scholar
[7] Bryan, J., Graber, T., and Pandharipande, R., The orbifold quantum cohomology of C2/Z3 and Hurwitz-Hodge integrals, J. Algebraic Geom. 17 (2008), 128.Google Scholar
[8] Bryan, J., Katz, S., and Leung, N. C., Multiple covers and the integrality conjecture for rational curves in Calabi-Yau threefolds, J. Algebraic Geom. 10 (2001), 549568.Google Scholar
[9] Coates, T., Corti, A., Iritani, H., and Tseng, H.-H., The crepant resolution conjecture for type A surface singularities, preprint, arXiv:0704.2034 Google Scholar
[10] Coates, T., Iritani, H., and Tseng, H.-H., Wall-crossings in toric Gromov-Witten theory, I: Crepant examples, Geom. Topol. 13 (2009), 26752744.Google Scholar
[11] Fulton, W., Introduction to Toric Varieties, Annals of Mathematics Studies 131, Princeton University Press, Princeton, 1993.Google Scholar
[12] Fulton, W., Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1998.Google Scholar
[13] Iritani, H., An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), 10161079.Google Scholar
[14] Li, J. and Tian, G., Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), 119174.Google Scholar
[15] Nahm, W. and Wendland, K., Mirror symmetry on Kummer type K3 surfaces, Comm. Math. Phys. 243 (2003), 557582.Google Scholar
[16] Perroni, F., Chen-Ruan cohomology of ADE singularities, Int. J. Math. 18 (2007), 151.Google Scholar
[17] Reid, M., “Young person’s guide to canonical singularities” in Algebraic Geometry, (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46, Amer. Math. Soc., Providence, 1987, 345414.Google Scholar
[18] Ruan, Y., “The cohomology ring of crepant resolutions of orbifolds” in Gromov-Witten theory of spin curves and orbifolds, Contemp. Math. 403, Amer. Math. Soc., Providence, 2006, 117126.Google Scholar
[19] Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences, www.research.att.com/njas/sequences/ Google Scholar
[20] Tyurina, G. N., Resolution of singularities of plane deformations of double rational points, Funct. Anal. Appl. 4 (1970), 6873.Google Scholar