Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T03:40:14.810Z Has data issue: false hasContentIssue false

ERRATUM TO “NON-UNIFORMLY FLAT AFFINE ALGEBRAIC HYPERSURFACES”

Published online by Cambridge University Press:  06 June 2023

ARINDAM MANDAL
Affiliation:
Department of Mathematics Indian Institute of Science Bangalore 560012, India arindamm@iisc.ac.in
VAMSI PRITHAM PINGALI*
Affiliation:
Department of Mathematics Indian Institute of Science Bangalore 560012, India
DROR VAROLIN
Affiliation:
Department of Mathematics Stony Brook University Stony Brook, New York 11794-3651, USA dror@math.stonybrook.edu
Rights & Permissions [Opens in a new window]

Abstract

In this erratum, we correct an erroneous result in [PV2] and prove that the affine algebraic hypersurfaces $xy^2=1$ and $z=xy^2$ are not interpolating with respect to the Gaussian weight.

Type
Erratum
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

1 Introduction

Let $(X,\omega )$ be a Stein Kähler manifold of complex dimension n, equipped with a holomorphic line bundle $L \to X$ with smooth Hermitian metric $e^{-\varphi }$ , and let $Z \subset X$ be a complex analytic subvariety of pure dimension d. To these data, assign the Hilbert spaces

$$\begin{align*}{\mathscr B} _n (X, \varphi) := \left \{ F \in H^0(X,{\mathcal O} _X(L))\ ;\ ||F||^2_X := \int _{X} |F|^2 e^{-\varphi} \frac{\omega ^n}{n!} < +\infty \right \} \end{align*}$$

and

$$\begin{align*}\mathfrak{B} _d (Z, \varphi) := \left \{ f \in H^0(Z,{\mathcal O} _Z(L))\ ;\ ||f||^2_Z := \int _{Z_{\mathrm{reg}}} |f|^2 e^{-\varphi} \frac{\omega ^d}{d!} < +\infty \right \}. \end{align*}$$

Such Hilbert spaces are called (generalized) Bergman spaces. When the underlying manifold is $\mathbb {C}^n$ and the weight $\varphi $ is a Bargmann–Fock weight, the spaces are called (generalized) Bargmann–Fock spaces.

We say that Z is interpolating if the restriction map

$$\begin{align*}{\mathscr R} _Z : H^0(X, {\mathcal O} _X (L)) \to H^0(Z, {\mathcal O} _Z(L)) \end{align*}$$

induces a surjective map on Hilbert spaces. If the induced map

$$\begin{align*}{\mathscr R} _Z : {\mathscr B} _n (X, \varphi) \to {\mathfrak B} _d (Z, \varphi) \end{align*}$$

is surjective, then one says that Z is an interpolation subvariety, or simply interpolating with respect to $\varphi $ . It can be easily shown that if Z is interpolating, the map above is bounded.

In [Reference Pingali and VarolinPV2], Pingali and Varolin claimed that (Theorems 2 and 3) the (nonuniformly flat) curve $C_2=\{(x,y) \in \mathbb {C}^2 \ \vert \ xy^2=1\}$ and the surface $S=\{(x,y,z)\in \mathbb {C}^3 \ \vert \ z=xy^2\}$ are interpolating with respect to a smooth weight $\varphi $ satisfying $m\omega _0 \leq \sqrt {-1}\partial \bar {\partial } \phi \leq M \omega _0$ , where $\omega _0$ is the Euclidean metric and $m,M>0$ are positive constants. The purported proof of the claim rested heavily on Lemma 3.2, which aimed to generalize the QuimBo trick [Reference Berndtsson and Ortega CerdáBOC]. Unfortunately, Lemma 3.2 is false. (However, for Theorems 1 and 4, we do not need Lemma 3.2. Instead, Lemma 6 in [Reference LindholmL] in conjunction with elliptic regularity is enough.) In this erratum, we in fact prove that the negations of Theorems 2 and 3 in [Reference Pingali and VarolinPV2] are true.

Theorem 1. The curve $C_2$ is not interpolating with respect to the Gaussian weight $\vert x\vert ^2+\vert y\vert ^2$ .

Using Theorem 6.1 in [Reference Pingali and VarolinPV2], we can easily see that the following result holds.

Theorem 2. The surface S is not interpolating with respect to the Gaussian weight $\vert x\vert ^2+\vert y\vert ^2+\vert z \vert ^2$ .

These results lead us to suspect that perhaps uniform flatness might be equivalent to being interpolating (with respect to the Gaussian weight) for smooth affine algebraic hypersurfaces. For smooth affine analytic hypersurfaces, this expectation is false as shown in [Reference Pingali and VarolinPV1].

2 Proof of Theorem 1

Let $f_n(x,y)=y^{-(2n+1)}$ , then $f_n \in \mathcal {O}(C_2)$ .

Now,

(1) $$ \begin{align} ||f_n||^2&=\displaystyle \int_{C_2} |f_n(x,y)|^2e^{-(|x|^2+|y|^2)}dA \nonumber\\ &=\displaystyle \int_{\mathbb{C}^*}|y^{-(2n+1)}|^2e^{-(|y|^{-4}+|y|^2)}\left(1+4|y|^{-6}\right)dV(y)\nonumber\\ &=\pi \displaystyle \int_{r=0}^{\infty}r^{-(2n+1)}e^{-(r+r^{-2})}\left(1+4r^{-3}\right)dr. \end{align} $$

For $\frac {1}{2}<s<\frac {3}{2}$ and $\frac {1}{2}<t<\frac {3}{2}$ , let us consider the following integral:

$$ \begin{align*} \displaystyle \int_{0}^{\infty} e^{-(sr+tr^{-2})}4r^{-3}dr&=\left[ e^{-sr}\int e^{-tr^{-2}}4r^{-3}dr \right]_0^{\infty}-\int_0^{\infty}-se^{-sr} \left( \int e^{-tr^{-2}}4r^{-3}dr \right)dr\nonumber\\ &=\left[ e^{-sr}\frac{2}{t}e^{-tr^{-2}} \right]_0^{\infty}+\int_0^{\infty}se^{-sr} \frac{2}{t}e^{-tr^{-2}} dr\nonumber\\ &=\displaystyle \frac{2s}{t} \int_0^{\infty} e^{-(sr+tr^{-2})}dr. \nonumber\\ \end{align*} $$

Therefore, we have

(2) $$ \begin{align} \displaystyle \int_0^{\infty} e^{-(sr+tr^{-2})}\left( 1+4r^{-3}\right)dr=\displaystyle \left(1+ \frac{2s}{t}\right) \int_0^{\infty} e^{-(sr+tr^{-2})}dr. \end{align} $$

Differentiating (2) with respect to s, we arrive at the following:

(3) $$ \begin{align} \displaystyle \int_0^{\infty} -re^{-(sr+tr^{-2})}\left( 1+4r^{-3}\right)dr=\displaystyle \left(1+ \frac{2s}{t}\right) \int_0^{\infty} -re^{-(sr+tr^{-2})}dr+ \displaystyle \frac{2}{t} \int_0^{\infty} e^{-(sr+tr^{-2})}dr. \end{align} $$

Setting $s=1$ in (3), we have

(4) $$ \begin{align} \displaystyle \int_0^{\infty} re^{-(r+tr^{-2})}\left( 1+4r^{-3}\right)dr=\displaystyle \int_0^{\infty} re^{-(r+tr^{-2})}dr+ \displaystyle \frac{2}{t} \int_0^{\infty}(r-1) e^{-(r+tr^{-2})}dr. \end{align} $$

Differentiating (4) $(n+1)$ times with respect to t, we see that

(5) $$ \begin{align} &\displaystyle \int_0^{\infty} r\left( -r^{-2} \right)^{n+1}e^{-(r+tr^{-2})}\left( 1+4r^{-3}\right)dr \nonumber\\ &=\displaystyle \int_0^{\infty} r\left( -r^{-2} \right)^{n+1}e^{-(r+tr^{-2})}dr + 2\int_0^{\infty}(r-1) e^{-r} \frac{d^{n+1}}{dt^{n+1}}\left( \frac{e^{-tr^{-2}}}{t} \right)dr \nonumber \\ &=(-1)^{n+1} \displaystyle \int_0^{\infty} r^{-2n-1}e^{-(r+tr^{-2})}dr + 2(-1)^{n+1}\displaystyle\int_0^{\infty}(r-1) e^{-r} \sum\limits_{k=0}^{n+1}\frac{(n+1)!}{(n+1-k)!}\frac{r^{-2(n+1-k)}}{t^{k+1}}e^{-tr^{-2}}dr \nonumber\\ &=(-1)^{n+1} \displaystyle \int_0^{\infty} r^{-2n-1}e^{-(r+tr^{-2})}dr +2(-1)^{n+1}(n+1)!\displaystyle\int_0^{\infty}(r-1) e^{-(r+tr^{-2})}\sum\limits_{k=0}^{n+1}\frac{r^{-2(n+1-k)}}{(n+1-k)!}\frac{1}{t^{k+1}}dr. \nonumber\\ \end{align} $$

Substituting $t=1$ in (5), we get

(6) $$ \begin{align} \displaystyle \int_0^{\infty} r^{-(2n+1)}e^{-(r+r^{-2})}\left( 1+4r^{-3}\right)dr=&\displaystyle \int_0^{\infty} r^{-2n-1}e^{-(r+r^{-2})}dr\quad \nonumber \\ &+ 2(n+1)!\displaystyle\int_0^{\infty}(r-1) e^{-(r+r^{-2})}\sum\limits_{k=0}^{n+1}\frac{r^{-2k}}{k!}dr. \quad\end{align} $$

Now,

(7) $$ \begin{align} &\displaystyle \int_0^{\infty} r^{-2n-1}e^{-(r+r^{-2})}dr \nonumber\\ &=\left[e^{-r}\int r^{-2(n-1)}e^{-r^{-2}}r^{-3}dr \right]_0^{\infty}-\int_{0}^{\infty}-e^{-r}\left(\int r^{-2(n-1)}e^{-r^{-2}}r^{-3}dr\right)dr \nonumber\\ &=\frac{(-1)^{n-1}}{2} \left[ e^{-r} \sum\limits_{k=0}^{n-1}(-1)^{n-1-k}\frac{(n-1)!}{k!}(-r^{-2})^ke^{-r^{-2}} \right]_{0}^{\infty}\nonumber\\ &\quad+\frac{(-1)^{n-1}}{2} \int_{0}^{\infty}e^{-r} \sum\limits_{k=0}^{n-1}(-1)^{n-1-k}\frac{(n-1)!}{k!}(-r^{-2})^ke^{-r^{-2}}dr\nonumber\\ &=\frac{(n-1)!}{2}\int_{0}^{\infty}e^{-(r+r^{-2})} \sum\limits_{k=0}^{n-1}\frac{r^{-2k}}{k!}dr\nonumber\\ &\leq \frac{(n-1)!}{2}\int_{0}^{\infty}e^{-(r+r^{-2})} e^{r^{-2}}dr.\nonumber\\ &\leq (n-1)! \end{align} $$

Using (1), (6), and (7), we can see that the following holds:

(8) $$ \begin{align} ||f_n||^2 \leq \pi (n-1)! +2\pi (n+1)!\displaystyle\int_0^{\infty}(r-1) e^{-(r+r^{-2})}\sum\limits_{k=0}^{n+1}\frac{r^{-2k}}{k!}dr <\infty. \end{align} $$

Suppose $C_2$ is interpolating. Then, there exist $F_n\in \mathscr {B}_2((|x|^2+|y|^2))$ and $C>0$ such that $F_n|_{C_2}=f_n$ and

(9) $$ \begin{align} ||F_n||\leq C||f_n||, \forall n \in \mathbb{N}. \end{align} $$

Let

$$ \begin{align*} F_n(x,y)=\displaystyle \sum\limits_{i,j \geq 0}c_{ij}x^iy^j. \end{align*} $$

Then, we have

(10) $$ \begin{align} y^{-(2n+1)}&=\displaystyle \sum\limits_{i,j \geq 0}c_{ij}y^{-2i}y^j\nonumber\\ &=\displaystyle \sum\limits_{i,j \geq 0}c_{ij}y^{-(2i-j)}\nonumber\\ &=\displaystyle \sum\limits_{2i-j=2n+1}c_{ij}y^{-(2i-j)}.\nonumber\\ \end{align} $$

This equation implies that

(11) $$ \begin{align} \sum\limits_{k=1}^{\infty}c_{k+n,2k-1}=1. \end{align} $$

Equation (11) implies that there exists an $m\in \mathbb {N}$ such that $|c_{m+n,2m-1}|\geq 2^{-(m+1)}$ . Therefore,

(12) $$ \begin{align} ||F_n||^2&\geq \sum\limits_{k=1}^{\infty}|c_{k+n,2k-1}|^2(k+n)!(2k-1)!\nonumber\\& \geq |c_{m+n,2m-1}|^2(m+n)!(2m-1)!\nonumber\\& \geq (2^{-(m+1)})^2(1+n)!2^{2m-2}\nonumber\\& \geq \frac{(n+1)!}{2^4}. \end{align} $$

From (8), (9), and (12), we conclude that

$$ \begin{align*} \frac{(n+1)!}{2^4} \leq C \left( \pi (n-1)! +2\pi (n+1)!\displaystyle\int_0^{\infty}(r-1) e^{-(r+r^{-2})}\sum\limits_{k=0}^{n+1}\frac{r^{-2k}}{k!}dr \right). \end{align*} $$

This inequality implies that

$$ \begin{align*} \frac{1}{2^4} \leq \pi C \left( \frac{1}{n(n+1)} +2 \displaystyle\int_0^{\infty}(r-1) e^{-(r+r^{-2})}\sum\limits_{k=0}^{n+1}\frac{r^{-2k}}{k!}dr \right). \end{align*} $$

We are led to a contradiction because $\left ( \frac {1}{n(n+1)} +2 \displaystyle \int _0^{\infty }(r-1) e^{-(r+r^{-2})}\sum \limits _{k=0}^{n+1}\frac {r^{-2k}}{k!}dr \right ) \rightarrow 0$ , as $n \rightarrow \infty $ . $\Box $

Footnotes

Pingali is partially supported by grant F.510/25/CAS-II/2018(SAP-I) from the University Grants Commission (Govt. of India) and a Mathematical Research Impact Centric Support grant MTR/2020/000100 from the Science and Engineering Research Board (Govt. of India).

References

Berndtsson, B. and Ortega Cerdá, J., On interpolation and sampling in Hilbert spaces of analytic functions , J. Reine Angew. Math. 464 (1995), 109128.Google Scholar
Lindholm, N., Sampling in weighted ${L}^p$ spaces of entire functions in n and estimates of the Bergman kernel , J. Funct. Anal. 182 (2001), no. 2, 390426.10.1006/jfan.2000.3733CrossRefGoogle Scholar
Pingali, V. P. and Varolin, D., Bargmann–Fock extension from singular hypersurfaces , J. Reine Angew. Math. 717 (2016), 227249.10.1515/crelle-2014-0043CrossRefGoogle Scholar
Pingali, V. P. and Varolin, D., Nonuniformly flat affine algebraic hypersurfaces , Nagoya Math. J. 241 (2021), 143.10.1017/nmj.2019.2CrossRefGoogle Scholar