No CrossRef data available.
Published online by Cambridge University Press: 22 January 2016
Let k be an algebraic number field of finite degree, K be its normal extension of degree n, and ŝ be the set of those primes of K which have degree 1. Using this set s instead of the set of all primes of K, we define an s-restricted idèle of K by the same way as ordinary idèles. It is known by Bauer that the normal extension of an algebraic number field is determined by the set of all primes of the ground field which are decomposed completely in the extension field. This suggests that if we treat abelian extensions over K which are normal over k, the class field theory is expressed by means of the ŝ-restricted idèles (theorem 2). When K = k, ŝ is the set of all primes of K, and we have the ordinary class field theory.