Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T10:26:32.649Z Has data issue: false hasContentIssue false

A Theorem of Harrison, Kummer Theory, and Galois Algebras

Published online by Cambridge University Press:  22 January 2016

S. U. Chase
Affiliation:
Cornell University, Ithaca, New York, U.S.A.
Alex Rosenberg
Affiliation:
Cornell University, Ithaca, New York, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be a field and S a separable algebraic closure of R with galois group R. In [8] Harrison succeeded in describing R/R in terms of R only. More precisely, he constructed a certain complex (R, Q/Z) and proved Homc, where Homc denotes continuous homomorphisms and H2 stands for the second cohomology group of the complex . In this paper, which is mainly expository in nature, we reexamine Harrison’s proof and show how [8] connects with Kummer theory and the theory of galois algebras [16]. We emphasize that most of the ideas on which this paper is based originate in [8].

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1966

References

[1] Artin, E. and Tate, J., Class field theory, Mimeographed Notes, Harvard, 1961.Google Scholar
[2] Auslander, M. and Goldman, O., The Brauer group of a commutative ring, Trans. Amer. Math. Soc, vol. 97 (1960), pp. 367409.CrossRefGoogle Scholar
[3] Bourbaki, N., Algèbre commutative, chap. I.II, Hermann, Paris, 1962 (Act. scient, et ind. 1290).Google Scholar
[4] Cartan, H. and Eilenberg, S., Homological Algebra, Princeton University Press Princeton, 1956.Google Scholar
[5] Chase, S., Harrison, D. and Rosenberg, A., Galois theory and galois cohomology of commutative rings, Memoirs Amer. Math. Soc, 52 (1965), pp. 1533.Google Scholar
[6] Eilenberg, S. and Nakayama, T., On the dimension of modules and algebras II, Nagoya Math. J., vol. 9 (1955), pp. 116.Google Scholar
[7] Godement, R., Théorie des faisceaux, Hermann, Paris 1958 (Act. scient, et ind. 1252).Google Scholar
[8] Harrison, D. K., Abelian extensions of arbitrary fields, Trans. Amer. Math. Soc, vol. 106 (1963), pp. 230235.Google Scholar
[9] Harrison, D. K., Abelian extensions of commutative rings, Memoirs Amer. Math. Soc, 52 (1965), pp. 114.Google Scholar
[10] Hoechsmann, K., Über nicht-kommutative abelsche Algebren, J.f.d. reine u. angw. Math., vol. 218 (1965), pp. 15.Google Scholar
[11] MacLane, S., Homology, New York, Academic Press, 1963.CrossRefGoogle Scholar
[12] Rosenberg, A. and Zelinsky, D., Cohomology of infinite algebras Trans. Amer. Math. Soc, vol. 82 (1956), pp. 8598.Google Scholar
[13] Serre, J. P., Corps locaux, Paris, Hermann, 1962 (Act. scient, et ind. 1296).Google Scholar
[14] Serre, J. P., Cohoraologie galoisienne, Lecture Notes in Math. 5, Heidelberg, Springer, 1964.Google Scholar
[15] Waerden, van der, Moderne Algebra vol. 2, 2nd ed., Springer, Heidelberg, 1940.Google Scholar
[16] Wolf, P., Algebraische Theorie der galoisschen Algebren, Math. Forschungsberichte III, Deutscher Verlag der Wissenschaften, Berlin, 1956.Google Scholar
[17] Zariski, O. and Samuel, P., Commutative algebra, vol. 1, van Nostrand, Princeton, 1958.Google Scholar