Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T15:15:42.473Z Has data issue: false hasContentIssue false

The generalized auslander–reiten duality on a module category

Published online by Cambridge University Press:  19 January 2022

Pengjie Jiao*
Affiliation:
Department of Mathematics, China Jiliang University, Hangzhou310018, PR China (jiaopjie@cjlu.edu.cn)

Abstract

We characterize the generalized Auslander–Reiten duality on the category of finitely presented modules over some certain Hom-finite category. Examples include the category FI of finite sets with injections, and the one VI of finite-dimensional vector spaces with linear injections over a finite field.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auslander, M., Coherent functors, Proc. Conf. Categorical Algebra (La Jolla, CA, 1965), Springer, New York, 1966, pp. 189–231.CrossRefGoogle Scholar
Auslander, M., Functors and morphisms determined by objects, Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, PA, 1976), Lecture Notes in Pure and Applied Mathematics, Volume 37, Dekker, New York, 1978, pp. 1–244.Google Scholar
Auslander, M. and Reiten, I., Representation theory of Artin algebras III: almost split sequences, Comm. Algebra 3 (1975), 239294.CrossRefGoogle Scholar
Auslander, M., Reiten, I. and Smalø, S. O., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, Volume 36 (Cambridge University Press, Cambridge, 1995).Google Scholar
Church, T., Ellenberg, J. S. and Farb, B., FI-modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015), 18331910.CrossRefGoogle Scholar
Gabriel, P. and Roiter, A. V., Representations of finite-dimensional algebras, Algebra VIII, Encyclopaedia of Mathematical Sciences, Volume 73 (Springer, Berlin, 1992), pp. 1–177.Google Scholar
Gan, W. L. and Li, L., Coinduction functor in representation stability theory, J. Lond. Math. Soc. (2) 92 (2015), 689711.CrossRefGoogle Scholar
Gan, W. L. and Li, L., Noetherian property of infinite EI categories, New York J. Math. 21 (2015), 369382.Google Scholar
Jiao, P., The generalized Auslander-Reiten duality on an exact category, J. Algebra Appl. 17 (2018), 1850227.CrossRefGoogle Scholar
Jiao, P., Injective objects in the category of finitely presented representations of an interval finite quiver, Ark. Mat. 57 (2019), 381396.CrossRefGoogle Scholar
Jiao, P., Projective objects in the category of pointwise finite dimensional representations of an interval finite quiver, Forum Math. 31 (2019), 13311349.CrossRefGoogle Scholar
Krause, H., A short proof for Auslander's defect formula, Linear Algebra Appl. 365 (2003), 267270.CrossRefGoogle Scholar
Krause, H., Krull-Schmidt categories and projective covers, Expo. Math. 33 (2015), 535549.CrossRefGoogle Scholar
Lenzing, H. and Zuazua, R., Auslander-Reiten duality for abelian categories, Bol. Soc. Mat. Mexicana (3) 10 (2004), 169177.Google Scholar
Liu, S., Ng, P. and Paquette, C., Almost split sequences and approximations, Algebr. Represent. Theory 16 (2013), 18091827.CrossRefGoogle Scholar
Nagpal, R., VI-modules in nondescribing characteristic, part I, Algebra Number Theory 13 (2019), 21512189.CrossRefGoogle Scholar
Popescu, N., Abelian categories with applications to rings and modules, London Mathematical Society Monographs, Volume 3 (Academic Press, London/New York, 1973).Google Scholar