Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T23:07:33.340Z Has data issue: false hasContentIssue false

Lp-Spectral Multipliers for some Elliptic Systems

Published online by Cambridge University Press:  10 October 2014

Peer Christian Kunstmann
Affiliation:
Department of Mathematics, Karlsruhe Institute of Technology, Kaiserstrasse 89, 76128 Karlsruhe, Germany, (peer.kunstmann@kit.edu)
Matthias Uhl
Affiliation:
Department of Mathematics, Karlsruhe Institute of Technology, Kaiserstrasse 89, 76128 Karlsruhe, Germany, (peer.kunstmann@kit.edu)

Abstract

We show results on Lp-spectral multipliers for Maxwell operators with bounded measurable coefficients. We also present similar results for the Stokes operator with Hodge boundary conditions and the Lamé system. Here, we rely on resolvent estimates recently established by Mitrea and Monniaux.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Alexopoulos, G., Spectral multipliers on Lie groups of polynomial growth, Proc. Am. Math. Soc. 120(3) (1994), 973979.Google Scholar
2.Amrouche, C., Bernardi, C., Dauge, M. and Girault, V., Vector potentials in three-dimensional non-smooth domains, Math. Meth. Appl. Sci. 21(9) (1998), 823864.3.0.CO;2-B>CrossRefGoogle Scholar
3.Blunck, S., A Hörmander-type spectral multiplier theorem for operators without heat kernel, Annali Scuola Norm. Sup. Pisa IV 2(3) (2003), 449459.Google Scholar
4.Blunck, S. and Kunstmann, P. C., Weighted norm estimates and maximal regularity, Adv. Diff. Eqns 7(12) (2002), 15131532.Google Scholar
5.Blunck, S. and Kunstmann, P.C., Calderón–Zygmund theory for non-integral operators and the H functional calculus, Rev. Mat. Iber. 19(3) (2003), 919942.Google Scholar
6.Blunck, S. and Kunstmann, P. C., Generalized Gaussian estimates and the Legendre transform, J. Operat. Theory 53(2) (2005), 351365.Google Scholar
7.Chen, P., Ouhabaz, E. M., Sikora, A. and Yan, L., Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner-Riesz means, preprint (arXiv:1202.4052, 2012).Google Scholar
8.Christ, M., L p bounds for spectral multipliers on nilpotent groups, Trans. Am. Math. Soc. 328(1) (1991), 7381.Google Scholar
9.Coifman, R. R. and Weiss, G., Analyse harmonique non-commutative sur certains espaces homogenes, Lecture Notes in Mathematics, Volume 242 (Springer, 1971).Google Scholar
10.Colton, D. and Kress, R., Inverse acoustic and electromagnetic scattering theory, 2nd edn, Applied Mathematical Sciences, Volume 93 (Springer, 1998).Google Scholar
11.Constantin, P. and Foias, C., Navier-Stokes equations, Chicago Lectures in Mathematics (University of Chicago Press, 1988).Google Scholar
12.Dautray, R. and Lions, J.-L., Analyse mathématique et calcul numérique pour les sciences et les techniques, Volume 8 (Masson, Paris, 1988).Google Scholar
13.Davies, E. B., Uniformly elliptic operators with measurable coefficients, J. Funct. Analysis 132 (1995), 141169.Google Scholar
14.Davies, E. B., Limits on L p regularity of self-adjoint elliptic operators, J. Diff. Eqns 135(1) (1997), 83102.Google Scholar
15.Duong, X. T. and Yan, L. X., Spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, J. Math. Soc. Jpn 63(1) (2011), 295319.CrossRefGoogle Scholar
16.Duong, X. T., Ouhabaz, E. M. and Sikora, A., Plancherel-type estimates and sharp spectral multipliers, J. Funct. Analysis 196 (2002), 443485.Google Scholar
17.Dziubański, J. and Preisner, M., Remarks on spectral multiplier theorems on Hardy spaces associated with semigroups of operators, Rev. Unión Mat. Argent. 50(2) (2009), 201215.Google Scholar
18.Fabes, E., Mendez, O. and Mitrea, M., Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains, J. Funct. Analysis 159(2) (1998), 323368.Google Scholar
19.Hebisch, W., Functional calculus for slowly decaying kernels (1995; available at www.math.uni.wroc.pl/~hebisch/).Google Scholar
20.Hörmander, L., Estimates for translation invariant operators in L p spaces, Acta Math. 104 (1960), 93140.Google Scholar
21.Kriegler, C., Spectral multipliers, R-bounded homomorphisms, and analytic diffusion semigroups, Dissertation, Universität Karlsruhe (2009; available at http://digbib.ubka.uni-karlsruhe.de/volltexte/1000015866).Google Scholar
22.Kriegler, C., Hormander type functional calculus and square function estimates, preprint (arxiv:1201.4830v1, 2012).Google Scholar
23.Kunstmann, P. C., On maximal regularity of type L pL q under minimal assumptions for elliptic non-divergence operators, J. Funct. Analysis 255(10) (2008), 27322759.Google Scholar
24.Kunstmann, P. C. and Uhl, M., Spectral multiplier theorems of Hormander type on Hardy and Lebesgue spaces, preprint (arxiv:1209.0358, 2012).Google Scholar
25.Kunstmann, P. C. and Weis, L., Maximal L p-regularity for parabolic equations, Fourier multiplier theorems and H -functional calculus, in Functional analytic methods for evolution equations, Lecture Notes in Mathematics, Volume 1855, pp. 65311 (Springer, 2004).Google Scholar
26.Liskevich, V., SOBOL, Z. and Vogt, H., On the L p-theory of C 0-semigroups associated with second-order elliptic operators, II, J. Funct. Analysis 193(1) (2002), 5576.Google Scholar
27.Mauceri, G. and Meda, S., Vector-valued multipliers on stratified groups, Rev. Mat. Iber. 6(3) (1990), 141154.CrossRefGoogle Scholar
28.Mitrea, M., Sharp Hodge decompositions, Maxwell's equations, and vector Poisson problems on nonsmooth, three-dimensional Riemannian manifolds, Duke Math. J. 125(3) (2004), 467547.Google Scholar
29.Mitrea, M. and Monniaux, S., On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds, Trans. Am. Math. Soc. 361 (6) (2009), 31253157.CrossRefGoogle Scholar
30.Mitrea, M. and Monniaux, S., Maximal regularity for the Lame system in certain classes of non-smooth domains, J. Evol. Eqns 10(4) (2010), 811833.Google Scholar
31.Mitrea, D., Mitrea, M. and Taylor, M., Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds, Memoirs of the American Mathematical Society, Volume 713 (American Mathematical Society, Providence, RI, 2001).Google Scholar
32.Schreieck, G. and Voigt, J., Stability of the L p-spectrum of Schrödinger operators with form-small negative part of the potential, in Functional Analysis: Proceedings of the Essen Conference, 1991, Lecture Notes in Pure and Applied Mathematics, Volume 150, pp. 95105 (Marcel Dekker, New York, 1994).Google Scholar
33.Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals (Princeton University Press, 1993).Google Scholar