Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T18:02:41.697Z Has data issue: false hasContentIssue false

An algorithm for solving generalized algebraic Lyapunov equations in Hilbert space, applications to boundary value problems

Published online by Cambridge University Press:  20 January 2009

Lucas Jódar
Affiliation:
Department of Applied MathematicsPolytechnical University of ValenciaValenciaSpain
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let L(H) be the algebra of all bounded linear operators on a separable complex Hubert space H. In a recent paper [7], explicit expressions for solutions of a boundary value problem in the Hubert space H, of the type

are given in terms of solutions of an algebraic operator equation

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1988

References

REFERENCES

1.Apostol, C., On the operator equation TX–XV = A, Proc. Amer. Math. Soc. 59 (1976), 115118.Google Scholar
2.Bhatia, R., Davis, Ch. and McIntosh, A., Perturbation of spectral subspaces and solution of linear operator equations, Linear Algebra Appl. 52/53 (1983), 4567.CrossRefGoogle Scholar
3.Davis, Ch. and Rosenthal, P., Solving linear equations, Canad. J. Math. 26 (1974), 13841389.CrossRefGoogle Scholar
4.Dunford, N. and Schwartz, J., Linear Operators, Vols. I, II (Interscience, 1957).Google Scholar
5.Heinz, E., Beitrage zur Storungstheorie de Spektralzerlegung, Math. Ann. 123 (1951), 415438.CrossRefGoogle Scholar
6.Hernández, V. and Jódar, L., Sobre la ecuación cuadrática en operadores A + BT + TC + TDT = 0, Stochastica 7 (1983).Google Scholar
7.Jódar, L., Boundary problems for Riccati and Lyapunov equations, Proc. Edinburgh Math. Soc. 29, (1986) 1521.CrossRefGoogle Scholar
8.Radjavi, H. and Rosenthal, P., Invariant Subspaces (Springer, 1973).CrossRefGoogle Scholar
9.Jameson, A., Solution of the equation AX + XB = C by inversion of an M × M matrix or an N × N matrix, SIAM J. Appl. Math. 16 (1968), 10201023.CrossRefGoogle Scholar
10.Goldstein, J. A., On the operator equation AX + XB = Q, Proc. Amer. Math. Soc. 70 (1978).Google Scholar